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Notation
• For a process X0, X1, X2, · · · , we write X0:T to refer to the vector (X0, · · · , XT ). Likewise, if
A0, · · · , AT is a collection of sets, we denote their Cartesian product A0 × · · · ×AT by A0:T .

• We often write measures in integral form. For example, when working with a probability kernel
M : E1 × B(E2) → [0, 1], we often write expressions like

ν(dy) =M(x, dy),

as shorthand to indicate that the measure ν on (E2,B(E2)) is defined as

ν(A) =

∫
A
M(x, dy), A ∈ B(E2)

• N,Z,R: the natural numbers, the integers and the real numbers respectively.

• For a measurable space (E, E), we write P(E) for the set of all probability measures on (E, E).

• For a measurable space (E, E), we write Bb(E) as the set of measurable bounded functions on E.

• We say that f(n) ≍ g(n) for two quantities that depend on some n if there are constants c < C
independent of n such that

cf(n) ≤ g(n) ≤ Cg(n).

Abstract
In this report, we describe the general framework of Feynman–Kac formulae. We motivate their introduction
through two statistical applications that give rise to the same Feynman–Kac structure. We present the
sequence of Feynman–Kac formulae as a flow on the space of measures, along with three different particle
interpretations of these formulae. In the spirit of seeking variance reduction methods for the simulation from
these measures, we motivate and study the Particle Filter algorithm. Finally, a second approach for variance
reduction, through a change of reference measure is discussed.

Statement of Authorship
The contents and ideas of this report have been obtained mainly from the books [1] and [3], although
the author has rephrased and motivated, whenever possible, the explanations in his own words. All dia-
grams have been created using the tikzcd package or with Python. Generative AI (ChatGPT-5, OpenAI,
https://chatgpt.com ) has been used to aid in the production of the Python-created diagrams, as well as
for grammatical and spelling checks.
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X0 X1 X2 · · · XT
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Figure 1: Graphical representation of a State-Space model.

1 Motivation
In this section we describe two examples from different application areas and see that after some thought
they all share a common structure. These discussions correspond to Chapters 2 and 3 from [1].

1.1 State-Space Models and the Filtering Problem

A state-space model is in essence a setup in which we have two processes: a Markov chain (Xn)n≥0 which
we can’t directly observe, and some noisy observations (Yn)n≥0 of (Xn)n≥0. Formally:

Definition 1.1 (State-Space Model). A State-Space Model consists of a pair of processes:

1. A discrete-time Markov chain X = (Xn)n≥0 on a measurable state space (E, E) with transition
kernels (Mn)n≥0 and initial law µ0.

2. A process (Yn) taking values in some measurable state space (H,H) which conditional on Xn = xn,
is sampled according to some densities fn(yn|xn).

Remark 1.2. According to the sampling scheme above, the joint law is given by

P(X0:T ∈ dx0:T , Y0:T ∈ dy0:T ) = µ0(dx0)
T∏
t=1

Mt(xt−1, dxt)
T∏
t=0

fn(yt|xt)dyt.

Let {(Xt), (Yt), (Pt), (ft)} be a State-Space model as we described it above. Imagine we wish to obtain
information about the process X (we may refer to this as the latent variables) given observations of the
process Y . This is referred to as the filtering problem.

To this end, let F : ET → R be a measurable function, and suppose we want to compute the expected
value of a function of the latent variables X0:T given the observations Y0:T . We can write this out fully as

E [F (X0:T ) | {Y0:T = y0:T }] =
∫
ET+1 F (x0:T )µ0(dx0)

∏T
t=1Mt(xt−1, dxt)

∏T
t=0 ft(yt|xt)∫

ET+1 µ0(dx0)
∏T

t=1Mt(xt−1, dxt)
∏T

t=0 ft(yt|xt)
.

The key observation is that we can rewrite this as EQT
[F (X0:T )], where QT is the measure on (ET , ET )

given by:

QT (dx0:T ) ∝

(
T∏
t=0

ft(yt|xt)

)
µ0(dx0)

T∏
t=1

Mt(xt−1, dxt)︸ ︷︷ ︸
PT (dx0:T )

,

where PT is just the measure on (ET , ET ) induced by the Markov chain X. Thus we have seen that we
have expressed our problem in a neat way by considering a tilted measure QT , where the weights where
the likelihoods.ft(yt|xt).

3



1.2 Rare Event Simulation

Suppose we have a Markov chain X = (Xn)n≥0 taking values in a state space E with some initial law
µ0 ∈ P(E). For a fixed time T > 0 and a measurable A ∈ E , define

AT = {Xt ∈ A : t ≤ T} .

We may treat AT as a rare event.

Example 1.3. Let X be a Simple Symmetric Random Walk (SSRW) on the integers. A rare event of
interest, to which we will come back later in this report, would be the event

AT = {|Xt| < k : t ≤ T}

as we will show later, the probability of this even decays exponentially.

We may be interested in computing

E[F (X0:T )|{X is alive at time T}],

which is of course nothing but

1

Z
E

F (X0:T )
∏
t≤T

1(|Xt| < k)

 ,
where Z = E

[∏
t≤T 1(|Xt| < k)

]
= P({X is alive at time T}). We now notice that just like in the

previous discussion of State-Space Models, we have expressed our quantity of interest as an expectation
EQT

[F (X0, · · · , XT )] under a tilted measure

QT (dx0, · · · , dxT ) ∝

∏
t≤T

1(|xt| < k)

P ((X0, · · · , XT ) ∈ (dx0, · · · , dxT )) .

In both of these examples, we have seen appear measures QT of the form

QT (dx0, · · · , dxT ) ∝

∏
t≤T

Gt(xt)

P ((X0, · · · , XT ) ∈ (dx0, · · · , dxT )) . (1.1)

The commonality between these two examples was that we had some Markov measure

P ((X0, · · · , XT ) ∈ (dx0, · · · , dxT ))

(meaning, the law of a Markov chain up to some time) weighed at each time step by some potentials Gt.
These types of measures are the so-called Feynman-Kac measures, to which we devote the next chapter
of the report to present in slightly greater generality.
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2 Feynman-Kac Models
To describe measures of the type 1.1 in full generality, it is useful to introduce a very general framework
for Markov chains. We allow the chain to take values in possibly different state spaces at each time step.
Denoting the state spaces by (E0, E0), (E1, E1), . . ., we will see that any such Markov chain (Xn)n≥0 can
be described canonically1 as the coordinate projections on the product space∏

n≥0

En,
∏
n≥0

En

 ,

that is,
Xm : (ωn)n≥0 7→ ωm.

Different probability measures on
(∏

n≥0En,
∏

n≥0 En
)
then correspond to different dynamics of the Markov

chain. This discussion corresponds to [3, Section 2.2].

2.1 Canonical Probability Spaces

We now describe a rigorous construction of a Markov chain as described above. That is, given an initial law
µ0 on a measurable space (E0, E0) and a collection of transition kernels {Mn}n, where

Mn : En × En+1 → [0, 1]

(i.e. the kernels map the nth measurable space to the (n+ 1)st one), we seek the following:

1. A probability space (Ω,F ,P) on which

2. A sequence of random variables (Xn)n≥0 is defined such that

P((X0, . . . , Xn) ∈ d(x0, . . . , xn)) = µ0(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn).

We begin by defining (in the integral sense) a measure Pµ,n on

Ωn =

n∏
k=0

Ek

equipped with the product σ-algebra

Fn =
n∏

k=0

Ek

(recall that this is the smallest σ-algebra for which the projection maps πj : Ωn → Ej are measurable), by
setting

Pµ,n(d(x0, . . . , xn)) = µ(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn).

By the Ionescu–Tulcea Theorem (cf. [4, Page 249]), there exists a probability measure Pµ on

Ω =
∏
k≥0

Ek

1The word canonical is mathematicians’ way of saying: “we didn’t have to choose anything, so you can’t complain about
our choices.”
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equipped with the product σ-algebra
∏

k≥0 Ek, such that Pµ coincides with Pµ,n on all cylinder sets Cn of
the form

Cn(A0, . . . , An) = {(ωk)k≥0 : ωk ∈ Ak for 0 ≤ k ≤ n} = A0 × · · · ×An ×
∏

k≥n+1

Ek.

That is,
Pµ(Cn(A0, . . . , An)) = Pµ,n(A0 × · · · ×An) .

On this probability space ∏
k≥0

Ek,
∏
k≥0

Ek, Pµ


we define the process (Xn)n≥0 by

Xn

(
(ωk)k≥0

)
= ωn,

that is, as the canonical coordinate projections. Observe that under Pµ, the law of (Xn)n≥0 is precisely the
Markov law with initial distribution µ and transition kernels (Mn)n. Indeed,

Pµ((X0, . . . , Xn) ∈ A0 × · · · ×An) = Pµ(Cn(A0, . . . , An)) =

∫
A0×···×An

µ(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn),

where the first equality follows from the fact that (Xn) is defined as the coordinate projection, and the
second equality follows from the construction of Pµ via the Ionescu–Tulcea theorem.
In this way, we can treat Markov chains (Xn)n≥0 with Xn ∈ En in a “universal” manner by considering a
single canonical process (the coordinate projections), whose dynamics are entirely determined by the choice
of the measure Pµ as described above. We refer to the measures Pµ as reference measures.

2.2 Feynman-Kac Formulae

In this section, which corresponds to [3, Section 2.3], we describe what a Feynman–Kac model is. As
discussed in the motivation section, the main ingredients are a Markov chain and a sequence of potential
functions, which are used to weight the probabilities of the paths taken by the chain. We present these
models in their most general form, in light of Section 2.1.

To this end, let (En, En) be a sequence of measurable spaces and let M = (Mn)n be a sequence of Markov
kernels from En to En+1 describing the transitions of a Markov chain. Let furthermore µ ∈ P(E0) be a
probability measure on the initial space, and construct the probability space(∏

n

En,
∏
n

En, X, Pµ

)
,

where Xn denotes the projection onto the nth coordinate and Pµ is the reference measure associated with
the Markov chain started from the initial law µ and transition kernels M .
Let G = (Gn)n be a collection of measurable functions, where each Gn is En-measurable, bounded, and
non-negative, and such that

Eµ

∏
k≤n

Gk(Xk)

 > 0 for all n.

We may now define the Feynman–Kac path measures.
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E
G≪ 1

G ≈ 1

x0:T

y0:T

QT (x0:T ) ≪ QT (y0:T )

Figure 2: Visual depiction of the FK path model: in this figure we see two typical paths x0:T , y0:T by time T
of the chain with dynamics Pµ. The FK path model makes some paths more likely than others, with path
passing through the red region of low potential being assigned a much lower probability than the blue path
which passes through a region of high potential.

Definition 2.1 (Path models). With X, Pµ, and G as given above, we define the prediction and updated
Feynman–Kac path models associated with (G,M) as the sequences of probability measures on the path
space E0:n given by:

1. (Prediction):

Qµ,n(d(x0, . . . , xn)) =
1

Zn

 ∏
k≤n−1

Gk(xk)

Pµ,n(d(x0, . . . , xn)).

2. (Update):

Q̂µ,n(d(x0, . . . , xn)) =
1

Ẑn

∏
k≤n

Gk(xk)

Pµ,n(d(x0, . . . , xn)).

When convenient we may write {µ0,M,G} to indicate an FK model with initial law µ0, transition kernels
M = (Mn)n, and potentials G = (Gn)n, or simply {G,Pµ} if its clear that Pµ is the law constructed
from the initial law µ0 and the kernels M .

Remark 2.2. These measures are well defined, since the normalisation constants (often referred to as
partition functions) are non-zero by the assumption that

Eµ

∏
k≤n

Gk(Xk)

 > 0 for all n.

A useful way to interpret these measures is as follows. A Markov chain assigns probabilities to paths of
length n (that is, to elements of E0:n) via its reference measure restricted to the σ-algebra up to time n,
namely Pµ,n. By introducing the potential functions Gk, we may reweight these paths—making some more
likely than others—by multiplying Pµ,n(d(x0, . . . , xn)) by (possibly time-dependent) factors Gk evaluated
at each step xk along the path.
We now introduce the flow of time marginals:
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Definition 2.3. The sequence of measures (γn)n (resp. (γ̂n)n) on (En, En) defined by setting for a
function f ∈ Bb(En)

γn(f) = Eµ

f(Xn)
∏

k≤n−1

Gk(Xk)

 ,
and

γ̂n(f) = Eµ

f(Xn)
∏
k≤n

Gk(Xk)

 ,
are called the unnormalised prediction (resp. updated) Feynman-Kac models associated to (G,M). If we
divide these measures by γn(1) (resp. γ̂n(1)), we obtain the probability measures ηn (resp. η̂n) which are
called the normalised Feynman-Kac models associated to (G,M).

A recursion formula and the motivation for Particle Filtering.

There is a nice way of relating the model ηn+1 from ηn through two step procedure which we describe below.
This recursion will motivate a particle approximation for the measures ηn which we will study in depth in
Section 3. We first define the following transformation:

Definition 2.4 (Gibbs-Boltzmann transformation). Let (Gn) be a sequence of potentials as described
above, the mappings ψn : Pn(En) → Pn(En) given by

ψn(η)(dx) =
1

η(Gn)
Gn(x)η(dx),

are called the Gibbs-Boltzmann transformations. Here Pn(En) is the subset of P(En) consisting of
measures η with the property that η(Gn) > 0.

This transformation is merely tilting the measure η with a potential Gn, and normalising to obtain a
probability measure again. We now have the following proposition [3, Proposition 2.3.1]:

Proposition 2.5 (Flow of prediction models, ). Let (ηn)n and (η̂n)n be the prediction and updated models
described above. Then

ηn+1 = ψn(ηn)Mn+1, and η̂n+1 = ψn+1 (η̂nMn+1) .

Proof. First we show the fact that η̂n = ψn(ηn). Indeed, lets start by noting that:

γ̂n(f) = Eµ

f(Xn)Gn(Xn)
∏

k≤n−1

Gk(Xk)

 = γn(Gnf).

With this in mind we can observe that

η̂n(f) =
γ̂n(f)

γ̂(1)
=
γn(Gnf)/γn(1)

γn(Gn)/γn(1)
=
ηn(Gnf)

ηn(Gn)
= ψn(ηn)(f).
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Now that we have established this, we can finish off by noting that:

γn(f) = Eµ

f(Xn)
∏

k≤n−1

Gk(Xk)


= Eµ

(Mnf)(Xn−1)
∏

k≤n−1

Gk(Xk)

 = γ̂n−1(Mnf).

In other words, γn = γ̂n−1Mn. As such, we see that

ηn(f) = (η̂n−1Mn)(f) = (ψn−1(ηn−1)Mn)(f).

Similarly we obtain the recursion for the updated models.

2.3 A Particle Interpretation

2.3.1 Markov Chain with Killing

We now describe an interpretation of the Feynman–Kac model as the conditional distribution of a Markov
process that has not been killed ([3, Section 2.5.1]). We will interpret potential functions as killing rates.
For this purpose, we assume that the potential functions are strictly positive and moreover bounded above
by 1.

Definition 2.6 (Boltzmann Multiplicative Operator). For a collection of potentials G = (Gn)n, we define
the map Gn : Bb(En) → Bb(En) by

Gn(f) : x 7→ f(x)Gn(x).

Remark 2.7. We may view Gn as an integral operator with kernel Gn(x, dy) = Gn(x)δx(dy). In this way,

Gn(f)(x) =

∫
Gn(x)δx(dy)f(y) = Gn(x)f(x).

Notice that
∫
Gn(x, dy) ≤ 1, so we may interpret Gn as a sub-Markov kernel.

We can turn these kernels into genuine Markov kernels by adjoining a common cemetery state ∆ to all state
spaces En, which we denote by E∆

n . We then extend the remaining objects as follows:

1. For a function f ∈ Bb(En), we extend it to a function on E∆
n by setting f(∆) = 0.

2. For a kernel Mn : En × En+1 → [0, 1], we extend it to a kernel M∆
n : E∆

n × En+1 → [0, 1] by setting
M∆

n (∆, ·) = δ∆, and for x ∈ En, we define M∆
n (x, ·) =Mn(x, ·).

3. Finally, the extension of Gn is given by the kernel G∆
n defined as

G∆
n (xn, dyn) = Gn(xn)δxn(dyn) + (1−Gn(xn))δ∆(dyn).

Remark 2.8. This extension has the following effects:

1. For M∆
n : if the process is in the cemetery state, the only possible transition is to remain in the

cemetery state. Otherwise, M∆
n behaves exactly like Mn. This step is referred to as exploration.
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2. For G∆
n : if Xn is not in the state ∆ (i.e. it is alive), then after one step under G∆

n it remains alive
and equal to Xn with probability Gn(Xn), and is killed (moves to the cemetery state) with probability
1−Gn(Xn). Moreover,∫

E∆
n

G∆
n (x, dy) =

∫
En

G∆
n (x, dy) +

∫
{∆}

G∆
n (x, dy) = Gn(x) + (1−Gn(x)) = 1.

Thus, G∆
n is a genuine Markov kernel. This step is referred to as killing.

With this in mind, we define the following transition kernels:

Q∆
n+1 = G∆

n M
∆
n+1.

Let µ ∈ P(E0) be given, and define P∆
µ to be the probability measure on the canonical path space whose

finite-dimensional distributions correspond to those of a Markov chain with initial law µ and transition kernels
Q∆ up to time n.

Remark 2.9. We may think of the chain (Xn)n≥0 under the law P∆
µ as evolving in two steps:

Xn
killing−−−→ X̂n

exploration−−−−−−→ Xn+1.

This can be interpreted as a Markov process with transitions M evolving in an absorbing medium, where
the potentials G determine the absorption rate at each point.

Proposition 2.10. The updated Feynman–Kac model Q̂µ,n associated with (G,M) represents the con-
ditional law of the killed process X given that it is alive at time n.

Proof. Let T denote the killing time of the process (Xn)n≥0. Then

P∆
µ (T > n) = P∆

µ (X0 ∈ E0, X1 ∈ E1, . . . , Xn ∈ En)

=

∫
E0×···×En

µ(dx0)Q
∆
1 (x0, dx1) · · ·Q∆

n (xn−1, dxn)

=

∫
E0×···×En

µ(dx0)G0(x0)M1(x0, dx1)G1(x1) · · ·

= Eµ

∏
k≤n

Gk(Xk)

 .
This shows that γ̂n(1) = P∆

µ (T > n). By a similar argument, we also obtain

γ̂n(f) = E∆
µ

[
f(Xn)1{T>n}

]
.

Remark 2.11. We refer to the sets G−1
n ({0}) and G−1

n ((0, 1)) as the hard and soft obstacles at time n,
respectively. Note also that

ηn(f) = E∆
µ [f(Xn) | T ≥ n] , η̂n(f) = E∆

µ [f(Xn) | T > n] ,

where E∆
µ denotes expectation with respect to the law under which (Xn)n is the killed Markov chain

described above.
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Figure 3: Simulation of 500 simple random walks over 1000 steps with two hard obstacles and two soft
obstacles.

2.3.2 Interacting Process Interpretation

In the previous section we say how the distribution flows (ηt)t≥0 could be seen as the law of a Markov chain
at time t conditioned to survive some killing procedure. If this were to be simulated on a computer, this
interpretation would have an advantage of the simulated particles being independent from each other (we
will come to the bad downsides later). In this section we present an alternative particle interpretation for
the distribution flows. This discussion corresponds to [3, Section 2.5.2], since its mostly for completeness,
the reader may choose to skip directly to Section 3.

Proposition 2.12. Let Sn,η(x, dy) be defined via

Sn,η(x, dy) = Gn(x)δx(dy) + (1−Gn(x))ψn(η)(dy),

where, recall, that ψn is the nth Boltzmann-Gibbs transformation associated to potentials G. Then, if we
set Kn+1,η = Sn,ηMn+1, we have that:

1. Kn+1,η are probability kernels En × En+1 → [0, 1].

2. The distribution flow (ηn)n≥0 satisfies the relation

ηn+1 = ηnKn+1,ηn .

Proof. The proof that for any x ∈ En we have that Kn+1,η(x,En+1) = 1 is a simple calculation which we
skip. We will however, show that ηn+1 = ηnKn+1,ηn . Recall from previous discussions that we have already
proved that ηn+1 is equal to ψn(ηn)Mn+1. It thus suffices to show that ηnSn,ηn is indeed equal to ψn(ηn).
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Showing this is just a calculation too. Let f ∈ Bb(En), then

(ηnSn,ηn)(f) =

∫
En×En

ηn(dx) [Gn(x)δx(dy) + (1−Gn(x))ψn(ηn)(dy)] f(y)

=

∫
En×En

ηn(dx)Gn(x)δx(dy)f(y) +

∫
En×En

ηn(dx)(1−Gn(x))ψn(ηn)(dy)f(y)

=

∫
En

ηn(dx)Gn(x)f(x) + ψn(ηn)(f) (1− ηn(Gn))

= ηn(Gnf) +
ηn(Gnf)

ηn(Gn)
(1− ηn(Gn)) = ψn(f)

What is the particle interpretation of this result? It all boils down to a choice of a wise probability measure
Kη0 on the canonical probability space:

Definition 2.13. Let
(∏

n≥0En,
∏

n≥0 En, (Xn)n≥0

)
, be the canonical space, and (Kn+1,µn)µn∈P(En),n≥0

be the family of probability kernels described above. For an initial measure η0 ∈ P(En), let (ηn)n≥0,
satisfy the recurrence relation ηn+1 = ηnKn+1,ηn (i.e: the FK distribution flows). Construct with these
a measure K0 on the canonical space under which (Xn)n≥0 is a Markov Chain with transition kernels
(Kn+1,η+n), that is to say:

Kη0((X0, · · · , Xn) ∈ (dx0, · · · , dxn)) = η0(dx0)K1,η0(x0, dx1) · · ·Kn,ηn−1(xn−1, dxn).

The measure Kη0 is called the McKean measure associated to the kernels (Kn+1,µn)µn∈P(En),n≥0.

Remark 2.14. Markov Chains for which the transition kernels not only depend on current position but also
on the current distribution are called non-linear Markov Chains. The reason for this is the following. Say
we have a transition kernel Mn+1. Then we know that L(Xn+1) = L(Xn)Mn+1, so we can think of Mn+1

as an operator. This operator is in fact linear! For if µ and ν are two measures on (En, En), by the linearity
of the integral we have that (µ + ν)Mn+1 = µMn+1 + νMn+1. Now, for the case where the kernels M
depend on the current distribution, then we do not in general have (µ + ν)Mν+µ = µMµ + νMν . This is
where the term non-linear originates from.

Proposition 2.15. Let (Xn)n≥0 have law Kη0 as described above, then L(Xn) = ηn.

Proof. Let f ∈ Bb(En), and denote by Ēη0 the expectation with respect to the measure Kη0 . Then

L(Xn)(f) = Ēη0 [f(Xn)]

=

∫
E0×···×En

f(xn)η0(dx0)K1,η0(x0, dx1) · · ·Kn,ηn−1(xn−1, dxn)

=

∫
E1×···×En

f(xn)K2,η1(x1, dx2) · · ·Kn,ηn−1(xn−1, dxn)

∫
E0

η0(dx0)K1,η0(x0, dx1)︸ ︷︷ ︸
η1(dx1)

= · · · =
∫
En

f(xn)ηn(dxn)

12



Remark 2.16. We now have established that the non-linear Markov Chain with dynamics prescribed by Kη0

has law at time n equal to ηn. But what is the particle interpretation behind this? Well, once again, we can
look at the transition kernel Kn+1,ηn and notice that it involves a two-step transition. First we apply Sn,ηn
and then we explore according to the original dynamics Mn+1, so let’s think of what S is doing. Recall that

Sn,η(x, dy) = Gn(x)δx(dy) + (1−Gn(x))ψn(η)(dy).

In the particle interpretation, we can call applying S to the measure as performing an “interacting jump”
on the particle side: if the particle is currently at x ∈ En, then with probability Gn(x), remain at x (this is
given by the δx(dy) term); and with probability 1−Gn(x), resample the particle’s location according to the
measure ψn(ηn), which depends on the “cloud of particles” ηn. This is where the name interacting particle
interpretation comes from. In summary: the dynamics under Kη0 may be thought of as:

Xn
interacting jump−→ X̂n

exploring−→ Xn+1.

Where:

1. X̂n = Xn with probability Gn(Xn), and X̂n ∼ ψn(ηn) with probability 1−Gn(Xn).

2. Xn+1 ∼Mn+1(X̂n, ·)

13



3 Particle Filtering
After providing a couple of alternative particle interpretations for the meaning of the FK flows, let’s focus on
the question of simulating from these measures, or computing integrals with respect to these measures. The
killing interpretation gives us a straightforward (but naive) way of simulating from η̂n. Simply: for a large
fixed N , simulate N particle evolutions: (Xi

t)t≤n, for i = 1, · · · , N that evolve under the killing procedure
described before. Our naive estimator for η̂n(f) would then be:

1

#Surviving particles

N∑
i=1

f(Xi
n)1{Xi

n survived}. (3.1)

The issue with this is that in many examples, the event of survival may be a rare event, so that for example
its probability decays exponentially fast in n. What this means is that even if we start with a large number
N of particles, the sum above may be taken with respect to an almost zero number of surviving particles.
We will make this argument more precise in Section 5, but this will cause the estimator 3.1 to have a relative
variance that grows exponentially, which in effect makes the approximation terrible.

However, we can be a bit more clever and exploit the structure of the measures η̂n to come up with a clever
way of using an approximation to η̂n to give an approximation to η̂n+1. This will be the idea of the Particle
Filter, and the story begins by recalling a key result, namely that the measures satisfy a recursion

η̂n+1 = ψn+1

(
η̂nMn+1

)
.

We will see how this recursion naturally motivates the so-called Particle Filter, an algorithm that constructs
an approximation to η̂n through particle simulation. We will then study the convergence and stability
properties of this algorithm.

3.1 Motivation of the Particle Filter

Suppose we have a particle approximation to η̂n−1, defined by

η̂Nn−1(dx) =
1

N

N∑
i=1

δXi
n−1

(dx),

Where N is some presumably large number of particles. Note that we are not assuming the particles Xi
n−1

are independent. For the purposes of this motivation section, we simply assume that the empirical measure
they generate approximates η̂n−1 sufficiently well. It is then natural to assert that

η̂n(dx) ≈ ψn

(
η̂Nn−1Mn

)
. (3.2)

We can push this approximation one step further. Observe that

η̂Nn−1Mn(dx) =
1

N

N∑
i=1

Mn(X
i
n−1, dx).

An unbiased way to approximate this mixture of measures is to sample Xi
n ∼Mn(X

i
n−1, dx) and write

η̂Nn−1Mn(dx) ≈
1

N

N∑
i=1

δXi
n
(dx).

14



Substituting this approximation into (3.2), we obtain

η̂n ≈ ψn

(
1

N

N∑
i=1

δXi
n

)

=

N∑
i=1

(
Gn(X

i
n)∑

j Gn(X
j
n)

)
δXi

n
:=

N∑
i=1

W i
nδXi

n
.

Finally, we continue this approximation scheme as follows. Since this approximation to η̂n is itself a weighted
mixture of point masses, we can produce an unweighted particle approximation by resampling: for each i,
select one of the particles X1

n, . . . , X
N
n —say particle j—with probability W j

n, and define X̂i
n equal to Xj

n.
This yields the empirical measure

1

N

N∑
i=1

δ
X̂i

n
.

Which we claim approximates η̂n. In summary, starting with an empirical measure that approximates η̂n−1,
we have produced another empirical measure which approximates η̂n. At this point, the procedure can be
iterated indefinitely by repeating the steps described in this motivation section. In fact, this is precisely the
Particle Filtering algorithm. What remains is to state it formally and to make the above approximations
rigorous by showing that they are valid in the particle limit N → ∞.

3.2 The Particle Filter

We now state the definition of the Particle Filter (PF) algorithm:

Definition 3.1 (Generic Particle Filter). A Particle Filter is given by the following algorithm:

Require: A Feynman-Kac model {µ0, (Mt), (Gt)}, a fixed numberN of particles to simulate, a resampling
scheme, and a finite time horizon T .

1: for n = 1 to N do
2: Sample Xn

0 ∼ µ0.
3: Compute Wn

0

4: end for
5: for t = 1 to T do
6: for n = 1 to N do
7: Choose ancestor: An

t ∼ Resample(W 1:N
t−1 )

8: Sample Xn
t ∼Mt(X

An
t

t−1, dxt)
9: end for

10: Compute W 1:N
t

11: end for

Remark 3.2. There are several ways that the resampling step in line 7 could be implemented. The one
we will focus on here is the so-called multinomial resampling scheme, which simply chooses An

t = j with
probability W j

t−1, i.e: we choose the ancestor of particle n to be particle j with probability equal to the

weight of particle Xj
t−1.
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Figure 4: Trajectories of the Particle Filter algorithm described above (with multinomial resampling) with
500 particles. The reference measure for the Markov chain is that of a Simple Symmetric Random Walk
on Z, and the potentials Gt are all equal to G(x) = 1

2

(
1 + 1{|x|≤k}

)
. One trajectory shown in full opacity,

and the remaining trajectories are shown in reduced opacity. We see see that particles don’t tend to spend
much time in the regions of low potential, since the resampling step pushes particles towards areas of high
potential.

In light of the motivation section, it is natural to interpret the final collection of particles (Xn
T )n≤N as the

output of the algorithm, from which we can consider objects such as

1. An approximation of η̂T−1MT (dx) given by

1

N

N∑
n=1

δXn
T
(dx). (3.3)

2. An approximation of η̂T (dx) given by

η̂NT (dx) =
N∑

n=1

Wn
T δXn

T
(dx). (3.4)

Several questions of importance arise when looking at these estimates:

1. What kind of convergence results can we derive for η̂NT (f) where f ∈ Bb(ET )? As we will see, it will
turn out that η̂NT (f) → η̂T (f) as N → ∞ in L2 norm as well as in the almost sure sense.

2. Can we say anything about how the error η̂NT (f)− η̂(f) is distributed? As we will see, it will turn out
to be Gaussian under appropriate rescaling.

3. What is the asymptotic distribution of the error of our approximation?
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3.3 L2 convergence

While proving that η̂Nt (f) → η̂t(f) in L2 norm is not technically difficult, it is easy to get lost in the calcu-
lations without a clear understanding of why each step is performed. The argument is inductive in nature.
Specifically, we first show that if Approximation 3.3 is accurate at time t, then Approximation 3.4 is also
accurate at time t. We then show that if Approximation 3.4 is accurate at time t, then Approximation 3.3
is accurate at time t+ 1.

To clarify how these approximations are related, and how one leads to the other, it is helpful to think
in terms of “triangles” in the space of measures. In the triangle below, we illustrate how to pass from
Approximation 3.4 to the object it aims to approximate via two intermediate steps. The first step incurs
error due to the approximation of the complicated weights (in particular the denominator). The second step
incurs error from approximating η̂t−1Mt(dx) by the empirical measure 1

N

∑N
i=1 δXi

t
(dx).

∑N
i=1W t

iδX
i
t

ψt(η̂t−1Mt)

Gt(x)
(η̂t−1Mt)(Gt)

1
N

∑N
i=1 δX

i
t(dx)

Error incurred in weight normalisation (taken care of by Lemma 3.5 and Induction)

Error incurred in approximating η̂t−1Mt(dx) by
1
N

∑N
i=1 δXi

t
(dx)

(taken care of by Induction hypothesis)

And on the triangle below, we illustrate how to pass from Approximation 3.3 to the object it tries to
approximate: η̂tMt+1: the first error is incurred due to a “Monte-Carlo” error (called Monte-Carlo error

since 1
N

∑N
i=1 δXi

t+1
is quite literally a Monte-Carlo estimate of the measure

(∑N
i=1W

i
t δXi

t
(dx)

)
Mt+1) This

will be taken care of by Lemma 3.4. The second error is due to approximating η̂t by
∑N

i=1W
i
t δXi

t
. This will

be taken care of by the induction hypothesis.

1
N

∑N
i=1 δX

i
t+1

η̂tMt+1

∑N
i=1W

i
tMt+1(X

i
t , dx) =

(∑N
i=1W

i
t δXi

t
(dx)

)
Mt+1

”Monte-Carlo error”

Error incurred in approximating η̂t by
∑N

i=1W
i
t δXi

t

17



Proof of L2 convergence

First of all, a quick remark: as hinted in the description of the algorithm (cf. Definition 3.1), there are several
ways we could go about resampling the particles, but to go in line with the discussion in the motivation
section, we will work in the case of multinomial resampling, i.e: P({An

t = m}|Ft−1) =Wm
t−1, where (Ft)t≥0

is the filtration generated by the particle process (Xi
t)i≤N,t≥0. A key observation is that by conditioning on

the ancestor:

P (Xn
t ∈ dx|Ft−1) =

N∑
m=1

P (An
t = m|Ft−1)P (Xn

t ∈ dx|An
t = m) (3.5)

=
N∑

m=1

Wm
t Mt(X

m
t−1, dx) (3.6)

we obtain an expression for the conditional distribution of Xn
t given the history of the process up to time

t− 1. In particular, we see that conditional on Ft−1, the particles at time t are i.i.d, with distribution equal
to the one above. We will now start working towards proving the following: [1, Proposition 11.3].

Theorem 3.3 (L2 convergence). Suppose that the potential functions (Gt) of the Feynman-Kac model
are bounded and strictly positive. Then, for any time t there are constants ct and c

′
t such that for any

f ∈ Bb(Et), we have ∥∥∥∥∥ 1

N

N∑
n=1

f(Xn
t )− η̂t−1Mt(f)

∥∥∥∥∥
2

2

≤ ct
∥f∥2∞
N

, (3.7)

(replacing η̂−1M0 by µ0) and ∥∥∥∥∥
N∑

n=1

Wn
t f(X

n
t )− η̂t(f)

∥∥∥∥∥
2

2

≤ c′t
∥f∥2∞
N

, (3.8)

As explained in the discussion above, to prove these statements we will need a pair of Lemmas:

Lemma 3.4 (Monte-Carlo approximation). Let f as above. Then∥∥∥∥∥ 1

N

N∑
n=1

f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)

∥∥∥∥∥
2

2

≤ 1

N
∥f∥2∞ .

Proof. The proof simply relies on the observation we made in equation 3.6. Then, we observe that

E

[
1

N

N∑
n=1

f(Xn
t )

∣∣∣∣∣Ft−1

]
= E[f(Xn

t )|Ft−1] =

∫
En

N∑
m=1

Wm
t−1Mt(X

m
t−1, dx)f(x)

=

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)
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Thus, we see that:∥∥∥∥∥ 1

N

N∑
n=1

f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)

∥∥∥∥∥
2

2

= E

E
( 1

N

N∑
n=1

f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)

)2
∣∣∣∣∣∣Ft−1


(3.9)

= E

[
1

N
Var(f(Xn

t )|Ft−1)

]
(3.10)

≤ 1

N
∥f∥∞ . (3.11)

where in this last inequality we have used the that Var(X) ≤ EX2.

Now we need a second Lemma, which quantifies the error made by normalisation of the weights:

Lemma 3.5. Define the normalised potentials Ḡt =
Gt
ℓt
, where ℓt = η̂t−1Mt(Gt). Then∥∥∥∥∥

N∑
n=1

Wn
t f(X

n
t )−

1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t )

∥∥∥∥∥
2

2

≤ ∥f∥2∞

∥∥∥∥∥ 1

N

N∑
n=1

Ḡt(X
n
t )− 1

∥∥∥∥∥
2

2

Proof. The proof relies on the following simple observation. If we multiply and divide by ℓt we obtain:

N∑
n=1

Wn
t f(X

n
t ) =

∑N
n=1 Ḡt(X

n
t )f(X

n
t )∑N

n=1 Ḡt(Xn
t )

, (3.12)

and so we see that

N∑
n=1

Wn
t f(X

n
t )−

1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t ) =

N∑
n=1

Wn
t f(X

n
t )

(
1− 1

N

N∑
n=1

Ḡt(X
n
t )

)

≤ ∥f∥∞

(
1− 1

N

N∑
n=1

Ḡt(X
n
t )

)

squaring and taking expectations gives the claim.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. The idea is as follows: we will show that the bounds hold by induction on t. We
do so by showing that 3.7 at time t implies 3.8 at time t, and that 3.8 at time t implies 3.7 at time t+ 1.
Notice that the base case holds due to a standard Monte-Carlo estimate for i.i.d random variables. Let’s start.

We assume 3.7 holds at time t. Then

N∑
n=1

Wn
t f(X

n
t )− η̂t(f) =

N∑
n=1

Wn
t f(X

n
t )−

1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t ) (3.13)

+
1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t )− η̂t(f) (3.14)
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Since E[(X + Y )2] ≤ 2
(
EX2 +EY 2

)
, we can take each of these terms separately. Note that term 3.13

can be taken care of by using Lemma 3.5. Then we note that

∥f∥2∞

∥∥∥∥∥ 1

N

N∑
n=1

Ḡt(X
n
t )− 1

∥∥∥∥∥
2

2

= ∥f∥2∞

∥∥∥∥∥ 1

N

N∑
n=1

Ḡt(X
n
t )− η̂t−1Mt(Ḡt)

∥∥∥∥∥
2

2

,

and this can be taken care of by our assumption that inequality 3.7 holds at time t, with f = Ḡt. In other
words, we get that ∥∥∥∥∥

N∑
n=1

Wn
t f(X

n
t )−

1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t )

∥∥∥∥∥
2

2

≤ ∥f∥2∞ ct

∥∥Ḡt

∥∥2
∞

N
(3.15)

Continuing, we now look at the second term 3.14. The trick is that η̂t(f) = η̂t−1Mt(Ḡt× f), where Ḡt× f
is usual multiplication. Then we can apply the assumption that 3.7 holds at time t to the function Ḡt × f ,
and get that ∥∥∥∥∥ 1

N

N∑
n=1

Ḡt(X
n
t )f(X

n
t )− η̂t(f)

∥∥∥∥∥
2

2

≤ ct

∥∥Ḡt × f
∥∥2
∞

N
≤ ct

∥∥Ḡt

∥∥2
∞

∥f∥2∞
N

(3.16)

Thus combining E[(X+Y )2] ≤ 2
(
EX2 +EY 2

)
with bounds 3.15 and 3.16 gives that the bound 3.8 holds

with c′t = 4ct
∥∥Ḡt

∥∥2
∞. Now that we have proven that bound 3.7 at time t implies bound 3.8 at time t, we

are going to show that bound 3.8 at time t implies 3.7 at time t + 1. Then we will be done. In a similar
way, we simply add and subtract an intermediate quantity to our target quantity so that we can apply a
triangle-like inequality and estimate each term individually:

1

N

N∑
n=1

f(Xn
t+1)− η̂tMt+1(f) =

1

N

N∑
n=1

f(Xn
t+1)−

N∑
n=1

Wn
t (Mt+1f)(X

n
t ) (3.17)

+
N∑

n=1

Wn
t (Mt+1f)(X

n
t )− η̂tMt+1(f) (3.18)

The term 3.17 we can bound using Lemma 3.4, which gives that∥∥∥∥∥ 1

N

N∑
n=1

f(Xn
t+1)−

N∑
n=1

Wn
t (Mt+1f)(X

n
t )

∥∥∥∥∥
2

2

≤ 1

N
∥f∥2∞ (3.19)

Then, term 3.18 can be bounded using bound 3.8 at time t with the function Mt+1f . Noting that
(η̂tMt+1)(f) = η̂t ((Mt+1f)). Finally, its easy to see that ∥Mt+1f∥2∞ ≤ ∥f∥2∞, and so we get∥∥∥∥∥

N∑
n=1

Wn
t (Mt+1f)(X

n
t )− η̂tMt+1(f)

∥∥∥∥∥
2

2

≤ c′t
∥f∥2∞
N

. (3.20)

Finally, combining once again E[(X + Y )2] ≤ 2(EX2 +EY 2), with bounds 3.19 and 3.20, we get that∥∥∥∥∥ 1

N

N∑
n=1

f(Xn
t+1)− η̂tMt+1(f)

∥∥∥∥∥
2

2

≤ 2(1 + c′t)
∥f∥2∞
N

,

which is bound 3.7 at time t+ 1, hence finishing the proof.
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3.4 Almost Sure Convergence

The idea for this proof is once again to perform a two-step induction proof, as well as the derivation of a
fourth moment bound to replicate a step in the proof of the Strong Law of Large Numbers.

Theorem 3.6 (Almost Sure Convergence of Particle Filter). Assume the potentials (Gt) satisfy the same
assumptions as before. Then:

1. For any f ∈ Bb(Et), we have that for all t, almost surely as N → ∞:

1

N

N∑
n=1

f(Xn
t ) → η̂t−1Mt(f) (3.21)

writing η̂−1M0 := µ0.

2. For any f such that Gt × f ∈ Bb(Et), we have that for all t, almost surely as N → ∞:

N∑
n=1

Wn
t f(X

n
t ) → η̂t(f) (3.22)

Remark 3.7. Note that if f ∈ Bb(Et), then Gt × f ∈ Bb(Et) because the potentials are bounded by
assumption. Thus the second statement holds for a larger class of functions.

Proof. It is clear that convergence statement 3.21 holds at t = 0, since Xn
0 are i.i.d from µ0, and so we

apply the Strong Law of Large Numbers. Now assume that convergence statement 3.21 holds at time t, let
us show that 3.22 holds at time t. This is simply due to the fact that we can write

N∑
n=1

Wn
t f(X

n
t ) =

1
N

∑N
n=1 Ḡt(X

n
t )f(X

n
t )

1
N

∑N
n=1 Ḡt(Xn

t )
,

and both numerator and denominator converge: to η̂t−1Mt(Ḡt × f) = η̂t(f) and η̂t−1Mt(Ḡt) = 1 re-
spectively, using our assumption of 3.21 with the functions Ḡt × f and Ḡt respectively. This shows that
statement 3.22 holds at time t.

Now let’s assume that statement 3.22 holds at time t − 1, let’s show that statement 3.21 holds at time t.
The idea is to consider for n = 1, · · · , N , the random variables

Zn
t = f(Xn

t )−
N∑

n=1

Wn
t−1(Mtf)(X

n
t−1).

Recalling from equation 3.6 the shape of the distribution of the Xn
t ’s conditional on Ft−1, it is easy to see

that conditional on Ft−1, the Z
n
t ’s are centred i.i.d random variables. Now, consider:

E

( N∑
n=1

Zn
t

)4
∣∣∣∣∣∣Ft−1

 =
∑
i,j,k,l

E[Zi
tZ

j
tZ

k
t Z

l
t | Ft−1], (3.23)

Sine conditional on Ft−1, the Z
n
t ’s are i.i.d and centred, there won’t be many surviving terms, only:

1. Those where i = j = k = l, of which there are N terms, and each of them will contribute an
E[(Z1

t )
4 | Ft−1] to the sum.
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2. Those where two indices are the same, and the other two indices are the same, but different. E.g:
i = j = 1, and k = l = 2. Each of these terms will contribute an E[(Z1

t )
2 | Ft−1]

2, and there will be(
4

2

) N∑
i=1

∑
j ̸=i

1 = 6N(N − 1)

Effectively, 3.23 becomes:

E

( N∑
n=1

Zn
t

)4
∣∣∣∣∣∣Ft−1

 = NE[(Z1
t )

4 | Ft−1] + 6N(N − 1)E[(Z1
t )

2 | Ft−1]
2.

Now, since we are trying to prove statement 3.21, we can assume f ∈ Bb(Et), and so each of these
expectations is bounded by some absolute constant c, which means that

E

( N∑
n=1

Zn
t

)4
∣∣∣∣∣∣Ft−1

 ≤ cN2,

so by taking expectations, we see that the usual fourth moment of
∑N

n=1 Z
n
t also shares the same upper

bound. Now we can replicate the proof strategy of the Strong Law of Large Numbers under assumption of
bounded fourth moment. Namely: let ϵ > 0 be given, then

P

(∣∣∣∣∣ 1N
N∑

n=1

Zn
t

∣∣∣∣∣ > ϵ

)
≤

E

[(∑N
n=1 Z

n
t

)4]
ϵ4N4

≤ cN2

ϵ4N4
= c′

1

N2
,

which is summable in N , and so by the Borel-Cantelli Lemma, almost surely:

1

N

N∑
n=1

Zn
t → 0.

However,

1

N

N∑
n=1

Zn
t =

1

N

N∑
n=1

f(Xn
t )−

1

N

N∑
n=1

N∑
m=1

Wm
t−1(Mtf)(X

m
t−1)

=
1

N

N∑
n=1

f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1).

And due to our assumption of 3.22 holding, we can choose the function to be Mtf and we get that the
second term on the last equality above, converges almost surely to (η̂t−1Mt)(f). In other words, we have
shown that almost surely:

1

N

N∑
n=1

f(Xn
t ) → (η̂t−1Mt)(f),

completing the proof.
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3.5 A Central Limit Theorem

In the previous sections, we studied how the unweighted (resp. weighted) empirical measures given by the
particles (Xi

t)i≤n are good approximations to η̂t−1Mt (resp. η̂t) as the number of particles became large.
Since these approximations are random, the errors themselves will also be random. We would now like to
understand the asymptotic distribution of these errors. This will be given by a Central Limit Theorem for
Particle Filters.

Theorem 3.8 (CLT for Particle Filters). Under the same assumptions as before (potentials are positive
and upper bounded), we have that for any f ∈ Bb(Et):

√
N

 1

N

∑
n≤N

f(Xn
t )− η̂t−1Mt(f)

⇒ N (0, Ṽt(f)) (3.24)

and for any f such that Gt × f ∈ Bb(Et):

√
N

∑
n≤N

Wn
t f(X

n
t )− η̂t(f)

⇒ N (0, Vt(f)) (3.25)

where the variances are defined recursively by:

1. Ṽ0(f) = Varµ0(f).

2. Vt(f) = Ṽt
(
Ḡt × (f − η̂t(f))

)
for t ≥ 0.

3. Ṽt(f) = Vt−1(Mtf) + Varη̂t−1Mt
(f) for t ≥ 1.

The proof strategy, as usual, will consist on this ”two-step induction”.

Proof. Note that at t = 0, using the convention η̂t−1Mt = µ0, we get that statement 3.24 holds by the
normal CLT. Now we will show that 3.24 at time t implies 3.25 at time t. This will just be an application
of Slutsky’s Theorem. Note that

√
N

∑
n≤N

Wn
t f(X

n
t )− η̂t(f)

 =

√
N
(

1
N

∑
n≤N Ḡt(X

n
t )f(X

n
t )− Ḡt(X

n
t )η̂t(f)

)
1
N

∑
n≤N Ḡt(Xn

t )

=

√
N
(

1
N

∑
n≤N Ḡt(X

n
t )f̄(X

n
t )
)

1
N

∑
n≤N Ḡt(Xn

t )

Then, using the assumption that Ḡt × f̄ ∈ Bb(Et), 3.24 implies that the numerator converges to a

N
(
0, Ṽ (Ḡt × (f − η̂t(f))

)
. The denominator converges almost surely to 1 by the almost sure conver-

gence Theorem, and so the ratio converges to a N (0, Vt(f)), showing that 3.25 holds at time t. Now we
will show how 3.25 at time t− 1 implies 3.24 at time t.

Let’s first state the ingredients we’ll need and then prove them individually.
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If we define the following two quantities:

∆1 =
√
N

(
1

N

N∑
n=1

f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)

)
,

and

∆2 =
√
N

(
N∑

n=1

Wn
t−1(Mtf)(X

n
t−1)− η̂t−1Mt(f)

)
,

then we quickly see that the characteristic function of our object of interest, i.e:

√
N

 1

N

∑
n≤N

f(Xn
t )− η̂t−1Mt(f)

 ,

is simply E[exp{iu(∆1 + ∆2)}]. Since ∆2 is Ft−1 measurable, we can take it out of the conditional
expectation and see that

E[exp{iu(∆1 +∆2)}] = E [exp{iu∆2}E[exp{iu∆1} | Ft−1]] .

Now, observe that ∆2 is of the shape of statement 3.25 with the choice of function Mt×f but at t−1, and
so we know that ∆2 ⇒ Y , where Y ∼ N (0, Vt−1(Mtf)). Now we state the main ingredient of the proof.
Suppose we have shown that

E[exp{iu∆1} | Ft−1]
P→ exp

(
−σ

2u2

2

)
(3.26)

where σ2 = Varη̂t−1Mt
(f). Then by Slutsky’s Theorem, and the Continuous Mapping Theorem:

exp (iu∆2)E[exp{iu∆1} | Ft−1] ⇒ exp

(
iuY − σ2u2

2

)
.

But now, since everything above is bounded, (in particular less than 1), we can take a continuous function
that is equal to 1 on the unit disk and then decreases to zero, in conjunction to Portmanteaus Theorem, to
assert that

E [exp (iu∆2)E[exp{iu∆1} | Ft−1]] → E

[
exp

(
iuY − σ2u2

2

)]
.

But now since Y was a Normally distributed random variable, we know how its characteristic function will

look like, and so we see that the right hand side above will actually be exp
(
u2(Ṽt(f))

2

)
. In other words, the

characteristic function of
√
N

 1

N

∑
n≤N

f(Xn
t )− η̂t−1Mt(f)


converges to the characteristic function of a N (0, Ṽt(f)), so by Levy’s Theorem we are done. Therefore all
that’s remaining to do is to show 3.26. We can start by noticing that ∆1 is nothing but

√
N 1

N

∑N
n=1 Z

n
t =

1√
N

∑N
n=1 Z

n
t , where Z

n
t is as we defined previously:

Zn
t = f(Xn

t )−
N∑

m=1

Wm
t−1(Mtf)(X

m
t−1),
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and that these where conditionally i.i.d given Ft−1. From this we notice that E[exp(iu∆1) | Ft−1] =

(E[exp{iuN− 1
2Z1

t } | Ft−1])
N . Recall that if two complex numbers u, v have norm at most 1, we have the

inequality |uN − vN | ≤ N |u− v|. From this we gather that almost surely:

∣∣∣∣E [exp{iu∆1} | Ft−1]− exp

(
−σ

2u2

2

)∣∣∣∣ ≤ N

∣∣∣∣E [exp{iuN− 1
2Z1

t

}
| Ft−1

]
− exp

(
−σ

2u2

2N

)∣∣∣∣ (3.27)

So now we’ll look at the first term inside this absolute value. Recall from the Taylor expansion of ex that

| exp(ix)− 1− ix+ x2/2| ≤ |x|3/6.

We may use this to see that

E[exp{iuN− 1
2Z1

t } | Ft−1] = 1 + iuN− 1
2 E[Z1

t | Ft−1]︸ ︷︷ ︸
0

− u2

2N
E[(Z1

t )
2 | Ft−1]︸ ︷︷ ︸

:=σ2
N

+RN (3.28)

where |RN | ≤ |u|3
6N3/2E[|Z1

t |3 | Ft−1]. In other words:

N

∣∣∣∣E [exp{iuN− 1
2Z1

t

}
| Ft−1

]
− 1 +

u2

2N
σ2N

∣∣∣∣ a.s→ 0 (3.29)

To put this together with 3.27, we just need to bound

N

∣∣∣∣1− u2

2N
σ2N − exp

(
−σ

2u2

2N

)∣∣∣∣ = N

∣∣∣∣ u22N

(
σ2N − σ2

)
+O(N−2)

∣∣∣∣ (3.30)

So if we can show that σ2N
P→ σ2, then combining 3.30 with 3.29 will give 3.26. Which will finish the proof.

To show this, we write

σ2N := E
[
(Z1

t )
2 | Ft−1

]
(3.31)

= E

(f(Xn
t )−

N∑
n=1

Wn
t−1(Mtf)(X

n
t−1)

)2
∣∣∣∣∣∣Ft−1

 (3.32)

= E
[
f(Xn

t )
2 | Ft−1

]
−

(
N∑

n=1

Wn
t−1(Mtf)(X

n
t−1)

)2

(3.33)

=

N∑
n=1

Wt−1(Mtf
2)(Xn

t−1)︸ ︷︷ ︸
AN

−


N∑

n=1

Wn
t−1(Mtf)(X

n
t−1)︸ ︷︷ ︸

BN


2

(3.34)

Here step 3.33 comes from the fact that the second term is Ft−1 measurable. The last step comes from
the fact that we know the distribution of Xn

t conditional on Ft−1. We are almost done now. From the
assumption 3.25 at time t− 1, we know that

√
N(AN − η̂t−1(Mtf

2)) ⇒ N (0, · · · ).

From Slutsky’s Theorem, this means that in fact AN − η̂t−1(Mtf
2) ⇒ 0, but convergence in distribution to

a constant implies convergence in probability, and so AN
P→ η̂t−1(M

2
t f) = η̂t−1Mt(f

2). In a similar way,

BN
P→ η̂t−1Mt(f). From this it follows that σ2N

P→ η̂t−1Mt(f
2)− (η̂t−1Mt(f))

2 =: σ2. As required.
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4 Stability of Particle Filters
In the previous sections we saw some Convergence Theorems related to Particle Filters (cf. Theorems 3.6,
3.3). The downside of these Theorems is that they work in the particle limit N → ∞ and for a fixed time
t ≥ 0. In practice however, a Particle Filter will be implemented by fixing some N ≥ 1 to be your number
of particles, and then iterate the algorithm until some target time t. The CLT 3.8 told us that

√
N
(
η̂Nt (f)− η̂t(f)

)
⇒ N (0, Vt(f)),

which informally says that η̂Nt (f)− η̂t(f) ≈ N
(
0, Vt(f)

N

)
. What is the issue here? Well, from the statement

of the CLT we know that the variances Vt(f) are defined recursively, and a priori it is not clear whether they
behave ”well” as t → ∞. Indeed, if Vt(f) is unbounded as t → ∞, then our approximation actually keeps
getting worse and worse as time progresses, given that we have a fixed number of particles. It is crucial to
understand the growth of Vt(f). Let’s start with the following Lemma, which will give us an (albeit ugly)
explicit representation of the variance.

Notation. To avoid cluttering the document with parenthesis, for a measure µ and a function f , we will
write µf instead of µ(f).

Lemma 4.1 (Representation of the variances). The variances Vt(f) as defined in the statement of Theorem
3.8 satisfy the following equation:

Vt(f) =
t∑

s=0

(η̂s−1Ms)
[{
ḠsRs+1:t(f − η̂tf)

}2]
where Rs+1:t := Rs+1 ◦Rs+2 ◦ · · · ◦Rt(f), and Rt(f) :=Mt(Ḡt × f)

Proof. The proof is by induction. The base case t = 0 holds by looking at the CLT (Theorem 3.8), and
noting that V0(f) = Varµ0(Ḡ0(f − η̂tf)). Recall that we use the convention η̂−1M0 := µ0. Then note

that µ0[Ḡ0(f − η̂0f)] = 0 since η̂0 := Ḡ0µ0, and so Varµ0(Ḡ0(f − η̂tf)) = µ0

[{
Ḡ0(f − η̂0f)

}2]
, which is

exactly what the claim entails for t = 0.

Assume now that the claim holds at time t− 1, let’s show using the recursion from the CLT that the claim
holds at time t. From the recursion, we have that

Vt(f) = Vt−1(Mt(Ḡt × (f − η̂tf))︸ ︷︷ ︸
Rt(f−η̂tf)

) + Varη̂t−1Mt
(Ḡt × (f − η̂tf)) (4.1)

Now we examine each term individually. From our Inductive Hypothesis, we see that:

Vt−1(Rt(f − η̂tf)) =
t−1∑
s=0

(η̂s−1Ms)
[{
ḠsRs+1:t−1 (Rt(f − η̂tf)− η̂t−1 (Rt(f − η̂tf)))

}2]
(4.2)
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Now observe something important: η̂t−1(Rtf) = (η̂t−1Mt)(Ḡtf) = η̂tf , therefore, the term η̂t−1 (Rt(f − η̂tf))
in 4.2 is zero, and so 4.2 actually becomes

Vt−1(Rt(f − η̂tf)) =

t−1∑
s=0

(η̂s−1Ms)
[{
ḠsRs+1:t−1 (Rt(f − η̂tf))

}2]
(4.3)

=
t−1∑
s=0

(η̂s−1Ms)
[{
ḠsRs+1:t (f − η̂tf)

}2]
(4.4)

This is almost what we need. Let’s look at the second term of 4.1. Since

η̂t−1Mt(Ḡt × (f − η̂tf)) = 0,

(this is how Ḡt is defined), we see that

Varη̂t−1Mt
(Ḡt × (f − η̂tf)) = η̂t−1Mt

[{
Ḡt(f − η̂t)

}2]
,

which combining with 4.4 finishes the claim.

4.1 Strongly Mixing Kernels

Let’s recall some important definitions.

Definition 4.2 (Total Variation distance). Let P and Q be two probability measures on some measurable
space (E, E) we define their total variation distance as

∥P−Q∥TV := sup
A∈E

|P(A)−Q(A)|.

Remark 4.3. There are several equivalent definitions of total variation distance. One that will be useful to
us is the following:

∥P−Q∥TV = sup
∆f≤1

|P(f)−Q(f)|,

where ∆f = supx,y |f(x)− f(y)| is the maximum variation of a function. If P and Q both admit densities
p(x) and q(x) with respect to some common measure dx, it is also true that

∥P−Q∥TV =
1

2

∫
|p(x)− q(x)|dx.

Definition 4.4 (Contractivity Coefficient). Let M : En × En+1 → [0, 1] be a Markov kernel. We define
its Contractivity Coefficient ρM as

ρM := sup
x,y

∥M(x, ·)−M(y, ·)∥TV .

We call M strongly mixing if ρM < 1.

The contraction coefficient of a Markov kernel has the following functional interpretation
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Lemma 4.5. Let M be a Markov kernel with contraction coefficient ρ. Let φ ∈ Bb(E). Then

∆(Mφ) ≤ ρ∆φ

Remark 4.6. In a probabilistic sense, we can interpret this as follows: if a Markov chain (Xn)n≥1 has
transition kernels M , then the maximal oscillation of the function Ex[φ(X1)], i.e: φ evaluated after one
step of the chain, is smaller than the original maximal oscillation times a factor ρ.

Proof. First we note that for constants c ≥ 0, ∆(cf) = c∆(f). Thus

∆(Mφ) = ∆φ×∆

(
M

(
φ

∆φ

))
.

Now note that

∆

(
M

(
φ

∆φ

))
= sup

x,y

∣∣∣∣M (
x,

φ

∆φ

)
−M

(
y,

φ

∆φ

)∣∣∣∣
≤ sup

x,y
sup
∆ϕ≤1

|M(x, ϕ)−M(y, ϕ)|

= sup
x,y

∥M(x, ·)−M(y, ·)∥TV ≤ ρ

4.2 Asymptotic Stability of Variances

We will work under the following two assumptions:

Assumption 4.7 (Kernels). We assume that the Kernels (Mt) of our Markov Process Xt all admit a
density mt(xt|xt−1) with respect to some fixed measure dx and that there exists a constant cM ≥ 1 such
that for all t, xt, xt−1, x

′
t−1:

mt(xt|xt−1)

mt(xt|x′t−1)
≤ cm

It turns out this assumption is sufficient to guarantee that the kernel is strongly mixing:

Proposition 4.8. If Assumption 4.7 is fulfilled, then the kernels Mt are strongly mixing.

Proof. We use the equivalent expression for TV distance∥∥Mt(xt−1, ·)−Mt(x
′
t−1, ·)

∥∥
TV

= sup
A
Mt(xt−1, A)−Mt(x

′
t−1, A)

and observe that

Mt(xt−1, A)−Mt(x
′
t−1, A) =

∫
A

(
mt(xt−1, x)−mt(x

′
t−1, x)

)
dx

≤ (1− c−1
M )

∫
A
mt(xt−1, x)dx

≤ 1− c−1
M

where we’ve used the fact that the ratio of the densities is bounded below by 1/cM
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Assumption 4.9 (Potentials). The potential functions (Gt) are uniformly bounded, i.e: there exists
constants cl and cu such that for all t:

0 < cl ≤ Gt ≤ cu.

And the result we will now work towards proving is the following:

Theorem 4.10 (Asymptotic Stability of Variance). Under assumptions 4.7 and 4.9 we have that for any
f ∈ Bb(Et), the variances Vt(f) as defined in the CLT 3.8 are bounded uniformly in time.

In order to progress with the proof of Theorem 4.10, we first need to make a detour and discuss how the
Feynman-Kac measure Qt can actually be viewed as a the law of a Markov process (Z0, · · · , Zt) up to the
given time.

4.2.1 Feynman-Kac measure as a Markov measure

Proposition 4.11. Let Qt be a Feynman-Kac measure as defined earlier. Qt is a Markov measure with
initial law

Q0|t(dx0) =
1

Lt
H0:t(x0)G0(x0)M0(dx0)

and transition kernels

Qs|t(xs−1, dxs) =
Hs:t(xs)

Hs−1:t(xs−1)
Gs(xs−1, xs)Ms(xs−1, dxs).

Where Hs:t(xs) is defined by

Hs:t(xs) =

∫
X t−s

t∏
i=s+1

Gi(xi−1, xi)Mi(xi−1, dxi), s < t

and Ht:t = 1.

Proof. We verify that Q0|t(dx0) is a probability measure. Indeed:∫
X
Q0|t(dx0) =

1

Lt

∫
X

∫
X t

(
t∏

i=1

Gi(xi−1, xi)Mi(xi−1, dxi)

)
G0(x0)M0(dx0) =

∫
X t+1

Qt(dx0:t) = 1.

Let’s verify that Qs|t(xs−1, ·) is a probability measure. For this we need to note the following recursive fact:∫
X
Hs:t(xs)Gs(xs−1, xs)Ms(xs−1, dxs) =∫

X

∫
X t−s

t∏
i=s+1

Gi(xi−1, xi)Mi(xi−1, dxi)Gs(xs−1, xs)Ms(xs−1, dxs) =

∫
X t−(s−1)

t∏
i=s

Gi(xi−1, xi)Mi(xi−1, dxi) = Hs−1:t(xs−1)

from this calculation we see that Qs|t(xs−1, ·) integrates to 1. Finally, the fact that Qt is the product of
the initial measure and the Markov kernels follows from the telescoping of the product of all the Hs:t.
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Remark 4.12. The kernels Qs|t depend on t, hence why the notation emphasizes this dependence. More-
over, we can interpret the quantity Hs:t(xs) as the expected value of the product of all potentials from time
s+ 1 up to t of the Markov process X started at time s at position xs, which evolves with kernels {Mt}.
The connection between this Markovian view of Qt and the whole story of the variances is due to the
following proposition. Recall from Lemma 4.1 that we were considering a sum of integrals of objects of the
form Rs+1:t(φ), where Rs+1:t := Rs+1 ◦ · · · ◦Rt, and Rt(φ) =Mt(Ḡt × φ)

Proposition 4.13. With Rt, Qs|t as defined before, and H̄s:t defined as the Hs:t above but with Ḡs

instead of Gs, we have that
Rs+1:t(φ) = H̄s:t ×Qs+1:t|t(φ),

where Qs+1:t|t(φ) = Qs+1|t · · ·Qt|t(φ)

Proof. Recall from the definition of the kernels Qs|t that

Qs|t(xs−1, dxs) =
Hs:t(xs)

Hs−1:t(xs−1)
Gs(xs−1, xs)Ms(xs−1, dxs).

We can replace the H by the H̄, as well as the G by the Ḡ, so long as we also replace the definition of the
initial law to drop the Lt. Then we see that

Qs:t|t(φ)(xs−1) =
1

H̄s−1:t(xs−1)

∫ t∏
i=s

Ḡi(xi−1, xi)Mi(xi−1, dxi)φ(xt)

rearranging gives that H̄s−1:t(xs−1)Qs:t|t(φ)(xs−1) = Rs:t(φ)(xs−1) as required.

We need one last fact about the Markov process that gives rise to Qt before moving on with all the
ingredients of the proof.

Proposition 4.14. Let assumptions 4.7 and 4.9 hold, then the Markov Process defined by having law Qt

is strongly mixing.

Proof. Since we are assuming that the kernels Mt admit densities mt(xt|xt−1), we see that the kernels Qs|t
admit a density qs(xs|xs−1) given by

qs(xs|xs−1) =
Hs:t(xs)

Hs−1:t(xs−1)
Gs(xs−1, xs)ms(xs|xs−1).

Observe how

Hs:t(xs) =

∫
Gs+1(xs, xs+1)ms+1(xs+1|xs)Hs+1(xs+1)dxs+1

≤ cu
cl
cM

∫
Gs+1(x

′
s, xs+1)ms+1(xs+1|x′s)Hs+1(xs+1)dxs+1

=
cu
cl
cMHs:t(x

′
s).

and so
qs(xs|xs−1)

qs(xs|x′s−1)
=
Hs−1(x

′
s−1)

Hs−1(xs−1)

ms(xs|xs−1)

ms(xs|x′s−1)
≤ cGc

2
M

where cG = cu
cl
. Therefore, by proposition 4.8, we are done.

We may now progress with the ingredients of the proof. First, a couple technical lemmas:
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Lemma 4.15. Let ψ and φ be two continuous and bounded functions, with ψ ≥ 0 and φ satisfy supφ ≥ 0
and inf φ ≤ 0. Then

∆(ψφ) ≤ ∥ψ∥∞∆(φ)

Proof. Recalling from the definition that ∆(f) is supx,y |f(x) − f(y)| = supx f(x) − infy f(y). It is clear
that supx ψ(x)φ(x) ≤ ∥ψ∥∞ supx φ(x). Now notice, that since ψ ≥ 0, inf ψφ ≥ ∥ψ∥∞ inf φ. Indeed:
If inf φ = 0, then since ψ ≥ 0, inf φψ = 0. Otherwise, once again using non-negativity of ψ and the
assumption that inf φ is now strictly less than zero, it will follow that inf ψφ ≥ ∥ψ∥∞ inf φ. This finishes
the claim.

The next Lemma just says that any value of a bounded function φ lies within ±∆φ of its average.

Lemma 4.16. Let φ ∈ Cb(X ) and assume there is a measure P for which P(φ) = 1. Then

∥φ∥∞ ≤ 1 + ∆φ.

Proof. For all x, x′, we have that |φ(x)− φ(x′)| ≤ ∆φ, and so

φ(x′)−∆φ ≤ φ(x) ≤ φ(x′) + ∆φ.

Now take expectation with respect to X ′ ∼ P and we see that 1−∆φ ≤ φ(x) ≤ 1 + ∆φ. This gives the
claim since −(1 + ∆φ) ≤ 1−∆φ.

Remark 4.17. If there is a measure for which the integral is actually zero, then the lemma really does say
that the infinity norm is bounded above by the total variation of the function.

The final technical Lemma of the proof is the following (cf. [1, Page 183])

Lemma 4.18 (Bound on
∥∥H̄s:t

∥∥
∞). We have that

∥∥H̄s:t

∥∥
∞ ≤

t−s∏
i=1

(
1 + ρMρ

i−1
Q cG

)

Now we are ready to state and prove the main Theorem of the section.

Proof of Theorem 4.10. We have the following:

∆(Rs+1:t(φ)) = ∆(H̄s:t ×Qs+1:t|t(φ))

≤
∥∥H̄s:t

∥∥
∞∆(Qs+1:t|t(φ))

≤
∥∥H̄s:t

∥∥
∞ ρt−s

Q ∆(φ)

where the first equality is due to Proposition 4.13, the middle inequality is due to Lemma 4.15, and the
final inequality is due to iterated application of Lemma 4.5. Now we will use this as well as the bound from
Lemma 4.18 in the result we obtained in Lemma 4.1 to show the Theorem. Recall that

Vt(f) =

t∑
s=0

(η̂s−1Ms)
[{
ḠsRs+1:t(f − η̂tf)

}2]
, (4.5)
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and notice that since η̂s(Rs+1(f)) := η̂s(Ms+1Ḡs+1f) = η̂s+1(f), we have that η̂s (Rs+1:t(f − η̂tf)) =
η̂t(f − η̂tf) = 0, and so there is a probability measure (i.e: η̂s) under which Rs+1:t(f − η̂tf) has
zero mean, whence it follows (replicating the proof of Lemma 4.16 with a zero instead of a one) that
∥Rs+1:t(f − η̂tf)∥∞ ≤ ∆Rs+1:t(f − η̂tf). Now using the calculation above, it follows that in fact

∥Rs+1:t(f − η̂tf)∥∞ ≤
t−s∏
i=1

(
1 + ρMρ

i−1
Q cG

)
ρt−s
Q ∆f

Plugging this into 4.5, by taking out ∥Rs+1:t(f − η̂tf)∥2∞ from the integral, we get that

Vt(f) ≤
t∑

s=0

(
t−s∏
i=1

(
1 + ρMρ

i−1
Q cG

)
ρt−s
Q ∆f

)2

(η̂s−1Ms)(Ḡ
2
s)

≤ (∆f)2c2G

t∑
s=0

t−s∏
i=1

(
1 + ρMρ

i−1
Q cG

)2
ρ
2(t−s)
Q

where the last inequality follows from the fact that Ḡt =
Gt
ℓt

≤ cu
ℓt

and ℓt = η̂t−1Mt(Gt) ≥ cl. Now we can
just complete the proof by noticing the following trick:

Vt(f) =(∆f)2c2G

t∑
s=0

exp

(
2

t−s∑
i=1

log(1 + ρMρ
i−1
Q cG)

)
ρ
2(t−s)
Q

≤ (∆f)2c2G

t∑
s=0

exp

(
2ρMcG

t−s∑
i=1

ρi−1
Q

)
ρ
2(t−s)
Q

≤ (∆f)2c2G exp

(
2ρMcG
1− ρQ

)
× 1

1− ρ2Q
.

which is uniformly bounded in time.
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Summary K. Let us summarise the previous two chapters on Particle Filtering:

1. We were interested in computing an integral of the form η̂t(f) for some f ∈ Bb(Et), where η̂t is the
updated Feynman-Kac model.

2. From Proposition 2.5, we know that the sequence of models (η̂t)t≥0 satisfy the recursion given by
η̂t+1 = ψn+1(η̂tMt+1). As discussed in Section 3.1, this recursion motivated us to successively use
approximations, so that a particle approximation of η̂t yields a particle approximation to η̂t+1.

3. This intuition was formalised in the Particle Filter Algorithm (cf. Definition 3.1), whose inputs are the
ingredients of an FK model, i.e: an initial law µ0, some potentials G = (Gt)t≥0 and some transition
kernels M = (Mt)t≥0, as well as a number N of particles to simulate. This algorithm outputs at time
t a collection of particles (Xi

t)i≤N .

4. In the next two sections, we saw how these particles could be used to construct approximations to
η̂tMt+1 and η̂t+1. In particular, we saw that their integrals against test functions converges in L2 and
the almost sure sense to the “correct integrals”. We saw how the proofs had a “two-step recursion”
nature, and in the proof of the L2 case, we saw how this proof structure reflected our intuition of how
the errors propagate in the successive approximations.

5. We then saw how the error ηNt (f) − ηt(f) was approximately Gaussian for large N , with variance
Vt(f)
N , where Vt(f) was introduced through a recursive relation. This formalises our intuition, that for

a larger number of particles and a fixed time horizon, the precision of our estimates will be better.
However, the question remained whether as t → ∞, Vt(f) would remain bounded, for if it didn’t, it
would mean that as t grows, the approximations created by the particle filter would get worse and
worse.

6. This last question was answered in the positive in Section 4, where we saw that under some mixing
conditions on the kernels and some further regularity on the potentials, Vt(f) was uniformly bounded
in time.
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Figure 5: Simulation of 100 i.i.d copies of a SSRW killed when exiting the interval [−10, 10] after 500 steps.
From this realisation, only one particle has survived.

5 Variance Reduction by Changing Reference Measure
Notice that the Particle Filter could be thought of as a kind of mechanism for reducing variance in the
simulation η̂n. Indeed, we saw in Section 4 that under some mixing conditions on the kernels and some
boundedness conditions on the potentials, we had that the variance of the error remained stable as time
went through. In this last chapter, we will discuss an alternative way of reducing the variance of such
approximations. The key idea will be to change the dynamics of our Markov chain to make the event of
survival less rare. Throughout this chapter, we will continually use the example that we began in Section
1.2.

Example 5.1 (Continuation of Example 1.3). Let (Xt)t≥0 be a simple symmetric random walk (SSRW for
short) on the integers, which one could think of as a (very simplistic model of a) radioactive particle moving
in some medium. Let’s imagine that at the levels ±k we have two “absorbing barriers”, which cause a
particle to die upon hitting them. The natural rare event to consider here is

At = {|Xn| < k, for all n ≤ t},

and we may be interested in quantities such as Px(At), or Ex[f(Xt)|At], etc. Let’s make the following
observation however:

Lemma 5.2. The probability of the event At decays exponentially in t.

Sketch. Since the probability of jumping upwards is positive, we have that there exists constants m ∈ N
and δ > 0 such that for any x ∈ {−k + 1, · · · , k − 1},

Px(Xm > 2k) ≥ δ,
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from which it follows that for any starting point x in “allowed interval”, we have that Px(Am) < 1 − δ.
Now we can repeatedly use the Markov Property and apply this same reasoning to conclude that

Px(Ajm) < (1− δ)j .

Finally, by writing any t as jm+ r for some j, r, we get the desired claim.

Let’s assume we try to estimate this through the naive approach described at the start of Section 3, i.e: by

simulating n i.i.d paths
(
X

(i)
0 , X

(i)
1 , · · · , X(i)

t

)
up to time t from a SSRW on Z, and simply counting how

many of them stay in the interval Ik = {−k + 1, · · · , k − 1}. By the Strong Law of Large Numbers, we
know that as k → ∞, we will have almost sure convergence of our estimator

p̂ =
1

n

∑
i≤n

1
{(
X

(i)
0 , X

(i)
1 , · · · , X(i)

t

)
∈ Ik

}
to our desired probability. However, let’s have a closer look at what happens to the variance of our estimator
at a fixed sample size n:

Var0

 1

n

∑
i≤n

1{(X(i)
0 , X

(i)
1 , · · · , X(i)

t ) ∈ Ik}

 =
1

n2

∑
i≤n

Var0
(
1{(X(i)

0 , X
(i)
1 , · · · , X(i)

t )
)

=
1

n2

∑
i≤n

P0(τ > t)(1−P0(τ > t))

=
1

n
p0(t) (1− p0(t))

where p0(t) = P0(τ > t) for convenience. Naturally, this variance will be very small since p0(t) is also
really small, but the key observation is that we should compare it to the real value we are trying to estimate
(Indeed, if the variance of an estimator is of order 10−10 but the real value is of order 10−20, we actually
have an incredibly bad estimator!). Since for large t, we said that p0(t) ∼ exp(−ct), this relative variance
actually blows up if t is large relative to n. Indeed, the relative variance is:√

p0(t)(1−p0(t))
n

p0(t)
=

1√
np0(t)

√
(1− p0(t)) ∼

exp(c′t)√
n

In more precise words, as we increase t, we need exponentially many samples to maintain our error “stable”.
An intuitive explanation for this phenomenon is as follows: let’s consider the problem of estimating η̂n(f) =
E[f(Xn)|An]. The naive estimator would then be

1

#Surviving Particles

∑
survivors

f(X(i)
n ).

However, since the vast majority of paths are killed before time n, the estimator above effectively uses a
vanishing number of samples. In other words, under the law of the SSRW, most trajectories contribute
nothing to the expectation of interest, the law is “putting its mass in the wrong place”. An intuitive way to
fix this would be to change the reference measure so that a more meaningful fraction of these paths “reach
the rare event”. This is precisely what we will discuss in the next two sections. First, we will discuss some
general technicalities, and then present a specific example.
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5.1 Change of Reference Measure

Let us return to the general framework introduced earlier. We consider a canonical probability space∏
n≥0

En,
∏
n≥0

En, X, Pµ

 ,

where Pµ is a reference measure under which the canonical process X is a Markov chain with initial distri-
bution µ and transition kernels Mn : En × En+1 → [0, 1].

Suppose now that we wish to work with a different set of dynamics. More precisely, assume we choose
an alternative initial distribution µ̄ such that µ ≪ µ̄, and replace the transition kernels Mn by kernels M̄n

satisfying
Mn(x, ·) ≪ M̄n(x, ·), for all n and x ∈ En.

Equivalently, this corresponds to changing the reference measure from Pµ to a new measure P̄µ̄, under
which X is a Markov chain with initial distribution µ̄ and transition kernels M̄n.

Remark 5.3. In the context of the previous discussion, these new dynamics will be chosen so that “rare
events become less rare” under this new measure.

Given a collection of potentials G, a natural question is whether the Feynman–Kac model associated with
(G,Pµ) can be related to a new model (Ḡ, P̄µ̄) for a suitable choice of modified potentials Ḡ. In other
words: if we change the dynamics from Pµ to P̄µ, can we still keep the expectations the same if we alter
the potentials slightly? We quickly see from the assumptions above that the answer is positive:

Proposition 5.4. Let Pµ and P̄µ̄ be the probability measures described above. Let G be a collection of
potentials. Then defining new potentials

Ḡ(x0, · · · , xn) = G(x0, · · · , xn)
dMn(xn−1, ·)
dM̄n(xn−1, ·)

(xn), where
dM0

dM̄0
(x0) :=

dµ

dµ̄
(x0),

we have that the FK models associated to (G,Pµ) are equivalent to those associated to (Ḡ, P̄µ̄).

Proof. Note that we can write for a set A0 × · · · ×An ∈ E0 × · · · × En:

Pµ,n(A0 × · · · ×An) =

∫
A0

µ(dx0)

∫
A1

M1(x0, dx1) · · ·
∫
An

Mn(xn−1, dxn)

=

∫
A0

µ(dx0)

∫
A1

M1(x0, dx1) · · ·
∫
An

dMn(xn−1, ·)
dM̄n(xn−1, ·)

(xn)M̄n(xn−1, dxn)

unravelling all this, we get that

Pµ,n(A0 × · · · ×An) = EP̄µ,n

dµ
dµ̄

∏
k≤n

dMk(xk−1, ·)
dM̄k(xk−1, ·)

1A


so in fact we see that

dPµ,n

dP̄µ,n
(x0, · · · , xn) =

dµ

dµ̄
(x0)

∏
k≤n

dMk(xk−1, ·)
dM̄k(xk−1, ·)

(xk).
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Now the proof follows immediately. Indeed:

γ̂n(f) := EPµ

f(Xn)
∏
k≤n

Gk(Xk)


= EPµ,n

f(Xn)
∏
k≤n

Gk(Xk)


= EP̄µ̄,n

f(Xn)
∏
k≤n

Gk(Xk)
dPµ,n

dP̄µ̄,n
(X0, · · · , Xn)


= EP̄µ̄,n

f(Xn)
∏
k≤n

Ḡk(Xk)

 .

Remark 5.5. The proof above shows that the law Pµ is locally absolutely continuous with respect to P̄µ.
This means that for any finite time horizon n, the n-dimensional distribution Pµ,n is absolutely continuous
with respect to P̄µ,n.

A way of formalising the intuition that “variance can be reduced if the new dynamics make the rare event
less rare” is through the following proposition, whose content corresponds to [3, Exercise 12.3.3].

Proposition 5.6. Let µ be a probability measure on some measurable space (X ,B(X )), f be a non-
negative bounded function on X , and (Xi)i≤N be i.i.d samples from µ. Furthermore, let µ̄ be another
probability measure such that µ̄≫ µ, f̄ = f dµ

dµ̄ , and (X̄i)i≤N be i.i.d samples from µ̄. Finally, let µN and

µ̄N be the empirical measures obtained from each collection of particles respectively. Then

Var
(
µ̄N (f̄)

)
= Var

(
µN (f)

)
− 1

N
µ

(
f2
(
1− dµ

dµ̄

))

Proof. First of all, it is easy to verify that that NVar(µN (f)) = µ((f − µ(f))2) = µ(f2) − µ(f)2, as well
as a similar expression for µ̄ and f̄ , as well as the fact that E[µ̄N (f̄)] = µ(f). From this we see that,

NVar(µ̄N (f̄)) = µ̄((f̄ − µ(f))2)

= µ̄(f̄2)− µ(f)2

= µ

(
f2 × dµ

dµ̄

)
− µ(f)2 + µ(f2)− µ(f2)

= NVar(µN (f))− µ

(
f2
(
1− dµ

dµ̄

))
.

Example 5.7. Let’s specialise back our motivating example, where Px0,n is the law of a SSRW on Z,
i.e: Pn(x0, · · · , xn) is the probability that a SSRW on Z up to time n takes the path (x0, · · · , xn). In
light of Proposition 5.6, we can take µ = Px0,n and f(x0, · · · , xn) =

∏
i≤n 1{xi ∈ Ik}, where Ik =

{−k + 1, · · · , k − 1}. In this case, as we have seen, we may choose some different transition probabilities
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M̄(x, y) which give rise to a different law P̄x0,n on path space, and Proposition 5.6 tells us that by simulating
from P̄x0,n instead of Px0,n, we can obtain a variance reduction so long as

Px0,n

(
1{path is alive}

(
1− dPx0,n

dP̄x0,n

))
> 0.

This condition can be heuristically interpreted as: on average surviving paths are more like likely under P̄x0,n

than under Px0,n. The corresponding interpretation on the general case where we perform killing with rates
given by potentials G(x) is precisely that variance reduction is achieved if paths that spend more time on
areas of high potential are more likely under P̄ than P.

5.2 Doob’s Transform

To conclude the report, we present one way of constructing the new dynamics M̄ which we have been
discussing so far. We will then show a specific example and sketch an argument of why it produces a
reduction in variance.

Definition 5.8. LetM be a transition kernel from a space E → E (we assume homogeneity for simplicity),
and let U : E → R be a positive function, which we call a weight function on E. The kernel

Q(x, dy) =
U(y)

U(x)
M(x, dy)

is called the Doob’s h-transform of M with weight function U .

Remark 5.9. The kernel Q(x, dy) as defined above is not necessarily a probability kernel, i.e: Q(x,E)
might not be equal to 1 in general. It is quickly seen however, that Q(x, dy) is a probability kernel if and
only if U is harmonic for M , i.e: ∫

E
M(x, dy)U(y) = U(x).

The idea in the definition above is that U encodes the regions of space where we want our Markov chain to
spend more time in. To account for the case where U is not harmonic, we can then define a new transition
kernel,

M̄(x, dy) =
Q(x, dy)

Q(x, S)
=

1∫ U(z)
U(x)M(x, dz)

U(y)

U(x)
M(x, dy)

And with these new kernels, build the measure P̄. Let’s say for simplicity that we start both chains at the
same point x0 of state-space, then in light of the calculations done in section 5.1, we know that

dPx0,n

dP̄x0,n
(x0, · · · , xn) =

(
n∏

k=0

Q(xk, S)

)
U(x0)

U(xn)
(5.1)

In particular, we may now use this to relate expectations with respect to the measure Px0 to expectations
with respect to the measure P̄x0 . Namely:

Ex0

f(Xn)
∏
k≤n

Gk(Xk)

 = Ēx0

f(Xn)

∏
k≤n

Gk(Xk)Q(Xk, S)

 U(x0)

U(Xn)

 , (5.2)

where Ex0 and Ēx0 denote expectations with respect to P0 and P̄x0 respectively. Let’s return to the
example of the SSRW with killing. The reason why the Doob transform is useful for variance reduction
comes precisely from the following Proposition.
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Proposition 5.10. Let (Xn)n be a Markov chain with transition kernel P on some state space E. Let
A ⊂ E be a set of “allowed” states. Let PA be the restriction of P to A, i.e: PA : A×A→ [0, 1] given
by PA(x, y) = P (x, y). Let (λ,U) be an eigenpair for PA, i.e: PAU = λU . Then for x ∈ A:

lim
n→∞

Px(X1 = y|X1, · · · , Xn ∈ A) =
1

λ

U(y)

U(x)
P (x, y)

For a proof, we refer the reader to [2, Section 3.2]. In other words, the Doob transform with weight function
U as in the proposition above will give rise to the “survival” process, i.e: the original chain “conditioned on
living forever”. Let’s now see precisely how much variance reduction is achieved by having performed this
change of reference measure:

Example 5.11. Let’s show explicitly an example the Doob transform discussed above. In the case of the
SSRW on Z, let P be its transition matrix and Ik the interval {−k+1, · · · , k− 1}. We are then interested
in finding a function U(x) and an eigenvalue λ such that

(PIkU)(x) =
U(x+ 1)− U(x− 1)

2
= λU(x)

with the boundary conditions U(x) = 0 for x ∈ {−k, k}. By recalling that cos(θ) = 1
2 (exp(iθ) + exp(−iθ)),

one quickly verifies that {
U(x) = cos

(
πx
2k

)
x ∈ Ik

λ = cos
(

π
2k

)
solves the system above. As such, the resulting Doob transform looks like

P̄ (x, y) =
1

cos
(

π
2k

) cos (πy2k )
cos
(
πx
2k

)P (x, y).
Using these dynamics and all the theory discussed above, we see that for any x ∈ Ik:

Ex[f(Xn)1{particle is alive at time n}] = λnĒx

[
f(Xn)

U(x)

U(Xn)

]
.

With this expression we can now see how by simulating the right hand side expectation we can achieve a
drastic reduction in variance. Indeed: say we try to simulate

γ̂Nn (f) =
1

N

N∑
i=1

f(Xi
n)1{Xi

n is alive},

where (Xi
t)t≤n were i.i.d simulated from Px,n. Since f is bounded, we can write

Var(γ̂Nn (f)) ≍ 1

N
Var(1{Xi

n is alive}) γ̂n(f) ≍ Px,n(X
i
n is alive)

which means, in the same way as we saw earlier, that the relative variance of this approximation:√
Var(γ̂Nn (f))

γ̂n(f)
∼n→∞

exp(cn)√
N

for some c > 0,
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is of order exp(cn) as n→ ∞, which is not too good. On the other hand, we know that to compute γ̂n(f),
it suffices to estimate Ēx [f(Xn)/U(Xn)] and then weigh the result by the deterministic quantity U(x)λn.
Now notice that for the estimator

mN (f) =
1

N

N∑
i=1

f(X̄i
n)/U(X̄i

n),

where (X̄i
t)t ≤ n are i.i.d simulations from P̄x,n, we have that both

Var(mN (f)) =
1

N
Var(f(Xn)/U(Xn)) and E[mN (f)] = Ēx[f(Xn)/U(Xn)]

are order 1 as n→ ∞, which means that our relative variance is order 1 too as n→ ∞. A drastic reduction
compared to the naive method.
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