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Notation

e For a process Xg, X1, Xo,---, we write X1 to refer to the vector (Xo,---,Xr). Likewise, if
Ag, -+, Ap is a collection of sets, we denote their Cartesian product Ay X --- X Ap by Ag.p.

e We often write measures in integral form. For example, when working with a probability kernel
M : Ey x B(E2) — [0, 1], we often write expressions like

v(dy) = M(x,dy),

as shorthand to indicate that the measure v on (Eq, B(E32)) is defined as
v(A) = / M (z,dy), A € B(E»)
A

e N, Z, R: the natural numbers, the integers and the real numbers respectively.
e For a measurable space (E,E), we write P(E) for the set of all probability measures on (E, ).
e For a measurable space (E,£), we write B,(E) as the set of measurable bounded functions on E.

e We say that f(n) < g(n) for two quantities that depend on some n if there are constants ¢ < C
independent of n such that

cf(n) < g(n) < Cg(n).

Abstract

In this report, we describe the general framework of Feynman—Kac formulae. We motivate their introduction
through two statistical applications that give rise to the same Feynman—Kac structure. We present the
sequence of Feynman—Kac formulae as a flow on the space of measures, along with three different particle
interpretations of these formulae. In the spirit of seeking variance reduction methods for the simulation from
these measures, we motivate and study the Particle Filter algorithm. Finally, a second approach for variance
reduction, through a change of reference measure is discussed.

Statement of Authorship

The contents and ideas of this report have been obtained mainly from the books [I] and [3], although
the author has rephrased and motivated, whenever possible, the explanations in his own words. All dia-
grams have been created using the tikzed package or with Python. Generative Al (ChatGPT-5, OpenAl,
https://chatgpt.com ) has been used to aid in the production of the Python-created diagrams, as well as
for grammatical and spelling checks.
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Figure 1: Graphical representation of a State-Space model.

1 Motivation

In this section we describe two examples from different application areas and see that after some thought
they all share a common structure. These discussions correspond to Chapters 2 and 3 from [I].

1.1 State-Space Models and the Filtering Problem

A state-space model is in essence a setup in which we have two processes: a Markov chain (X, ),>0 which
we can't directly observe, and some noisy observations (Y,),>0 of (X,)n>0. Formally:

Definition 1.1 (State-Space Model). A State-Space Model consists of a pair of processes:

1. A discrete-time Markov chain X = (X, )n>0 on a measurable state space (E,E) with transition
kernels (My,)n>0 and initial law p.

2. A process (Y,,) taking values in some measurable state space (H,H) which conditional on X,, = z,,,
is sampled according to some densities fy,(yn|Ty,).

Remark 1.2. According to the sampling scheme above, the joint law is given by

T T
P(Xo.r € dxor, Yo.r € dyo.r) = po(dzo) HMt(iﬁtfla dxy) H Tn(yelze)dy:.
t=1 t=0

Let {(X¢), (Y2), (P%), (ft)} be a State-Space model as we described it above. Imagine we wish to obtain
information about the process X (we may refer to this as the latent variables) given observations of the
process Y. This is referred to as the filtering problem.

To this end, let F : ET — R be a measurable function, and suppose we want to compute the expected
value of a function of the latent variables Xo.p given the observations Y{.;7. We can write this out fully as

Jprar Fwor) po(dao) TT{Zy Mi(we_1,day) TTZ o fe(yelze)
S po(dao) Ht:1 My(z¢—1, dzy) Ht:() fe(yt|ze)

The key observation is that we can rewrite this as Eq,.[F(Xo.1)], where Qr is the measure on (ET,ET)
given by:

E[F(Xor) | {Yor = vor}] =

T
Qr(dzo.r) o (H fe(yelze) ) to(dzo) H t(@e—1, dwy),

Pr(dzo.T)

where P is just the measure on (ET,£T) induced by the Markov chain X. Thus we have seen that we
have expressed our problem in a neat way by considering a tilted measure Q7, where the weights where
the likelihoods. f;(y¢|x¢).




1.2 Rare Event Simulation

Suppose we have a Markov chain X = (X,,),>0 taking values in a state space E with some initial law
to € P(E). For a fixed time T' > 0 and a measurable A € &, define

AT:{XtEA:tST}.
We may treat Ar as a rare event.

Example 1.3. Let X be a Simple Symmetric Random Walk (SSRW) on the integers. A rare event of
interest, to which we will come back later in this report, would be the event

Ap ={|Xy| < k:t<T}
as we will show later, the probability of this even decays exponentially.

We may be interested in computing
E[F(Xo.7)|{X is alive at time T'}],

which is of course nothing but
1

ZE | FOon) [T 10X < k)|

t<T

where Z = E [Hthl(’Xt| < k)] = P({X is alive at time T'}). We now notice that just like in the

previous discussion of State-Space Models, we have expressed our quantity of interest as an expectation
Eq,[F(Xo,---,Xr)] under a tilted measure

Qr(dzo, -+ der) o [ [ 1zl < k) | P ((Xo,--- , Xr) € (dxo, -+ ,dor)).
t<T

In both of these examples, we have seen appear measures Qp of the form
Qr(dzo, - der) o | [] Gilwe) | P (Xo,--+, X71) € (dao, -+ ,dar)) . (1.1)
t<T
The commonality between these two examples was that we had some Markov measure
P ((Xo, -+, X7) € (dxo,- -+ ,dzT))

(meaning, the law of a Markov chain up to some time) weighed at each time step by some potentials G;.
These types of measures are the so-called Feynman-Kac measures, to which we devote the next chapter
of the report to present in slightly greater generality.



2 Feynman-Kac Models

To describe measures of the type in full generality, it is useful to introduce a very general framework
for Markov chains. We allow the chain to take values in possibly different state spaces at each time step.
Denoting the state spaces by (Ey, &), (E1,&1), ..., we will see that any such Markov chain (X,,),>0 can
be described canonicallyE] as the coordinate projections on the product space

ISR

n>0 n>0

that is,
Xt (Wn)n>0 — W

Different probability measures on (ano E,, ano 8n) then correspond to different dynamics of the Markov

chain. This discussion corresponds to [3, Section 2.2].

2.1 Canonical Probability Spaces

We now describe a rigorous construction of a Markov chain as described above. That is, given an initial law
o on a measurable space (Ejy, &) and a collection of transition kernels { M, },,, where

M, : E, x &1 — [0,1]
(i.e. the kernels map the n'" measurable space to the (n + 1)t one), we seek the following:
1. A probability space (2, F,P) on which
2. A sequence of random variables (X,),>0 is defined such that

P((X07 s vXn) € d(an ce 7xn>) = :UO(de)Ml ($0> dxl) e Mn(xn—la dl’n)

We begin by defining (in the integral sense) a measure P, on

n
Q=[] Ex
k=0
equipped with the product o-algebra
n
Fo=]] &
k=0

(recall that this is the smallest o-algebra for which the projection maps 7; : 2, — Ej are measurable), by
setting
P, n(d(zo,...,2n)) = p(dao)Mi(xo, dz1) - - - My(2p—1, dzy).

By the lonescu-Tulcea Theorem (cf. [4, Page 249]), there exists a probability measure P, on

Q:HEk

k>0

'The word canonical is mathematicians’ way of saying: “we didn’t have to choose anything, so you can’t complain about
our choices.”



equipped with the product o-algebra [ ], &, such that P, coincides with P, ,, on all cylinder sets C,, of
the form -

Cn(Ag, ..., Ay) = {(wk)r>0 1w € A for 0 <k <n}=Ap x--- X A, X H E;.
k>n+1

That is,
P,(Cn(Ag,...,An)) =Py pn(Ao x -+ x Ayp).

On this probability space

H Ek7 H glm P/L

k>0 k>0

we define the process (Xy,),>0 by
X (W)k=0) = wa,

that is, as the canonical coordinate projections. Observe that under P, the law of (X},),>0 is precisely the
Markov law with initial distribution p and transition kernels (M,,),. Indeed,

PM((X(), Ce ,Xn) € Ag x -+ X An) = Pu(Cn(AOv e ,An)) = / M(dl‘o)Ml(l'o,dxl) cee Mn(a;n_l, d.’L’n),
Agx-XAn

where the first equality follows from the fact that (X,,) is defined as the coordinate projection, and the
second equality follows from the construction of P, via the lonescu—Tulcea theorem.

In this way, we can treat Markov chains (X,,),>0 with X,, € E,, in a "universal” manner by considering a
single canonical process (the coordinate projections), whose dynamics are entirely determined by the choice
of the measure P, as described above. We refer to the measures P, as reference measures.

2.2 Feynman-Kac Formulae

In this section, which corresponds to [3, Section 2.3], we describe what a Feynman—Kac model is. As
discussed in the motivation section, the main ingredients are a Markov chain and a sequence of potential
functions, which are used to weight the probabilities of the paths taken by the chain. We present these
models in their most general form, in light of Section [2.1]

To this end, let (E,,&,) be a sequence of measurable spaces and let M = (M,,), be a sequence of Markov
kernels from E,, to E,11 describing the transitions of a Markov chain. Let furthermore p € P(Ey) be a
probability measure on the initial space, and construct the probability space

(HEH, I1&. X, Pu> ,

where X,, denotes the projection onto the nt" coordinate and P, is the reference measure associated with

the Markov chain started from the initial law p and transition kernels M.
Let G = (G,)n be a collection of measurable functions, where each G,, is £,-measurable, bounded, and
non-negative, and such that

E,|[] Gx(Xx)| >0 foralln.
k<n

We may now define the Feynman—Kac path measures.



Qr (o) < Qr(vo-7)

Figure 2: Visual depiction of the FK path model: in this figure we see two typical paths xq.7, yo.7 by time T’
of the chain with dynamics P,,. The FK path model makes some paths more likely than others, with path
passing through the red region of low potential being assigned a much lower probability than the blue path
which passes through a region of high potential.

Definition 2.1 (Path models). With X, P, and G as given above, we define the prediction and updated
Feynman—Kac path models associated with (G, M) as the sequences of probability measures on the path
space Ey., given by:

1. (Prediction):

1

Qun(d(xo, - ) = [ Gelar) | Pun(d(zo, ... xn)).
™ \k<n—1
2. (Update):
Bpun(d(o, - . ., @n)) = 21 T1 Gr(@r) | Pund(@o, ., 20))-
n \k<n

When convenient we may write { o, M, G} to indicate an FK model with initial law i, transition kernels
M = (My),, and potentials G = (Gy),, or simply {G,P,} if its clear that P, is the law constructed
from the initial law pg and the kernels M.

Remark 2.2. These measures are well defined, since the normalisation constants (often referred to as
partition functions) are non-zero by the assumption that

E, HGk(Xk) >0 forall n.
k<n

A useful way to interpret these measures is as follows. A Markov chain assigns probabilities to paths of
length n (that is, to elements of Ej.,) via its reference measure restricted to the o-algebra up to time n,
namely P, ,,. By introducing the potential functions G, we may reweight these paths—making some more
likely than others—by multiplying P, ,(d(zo, ..., xy)) by (possibly time-dependent) factors G, evaluated
at each step xj along the path.

We now introduce the flow of time marginals:



Definition 2.3. The sequence of measures (Vn)n (resp. (Yn)n) on (En,En) defined by setting for a
function f € By(Eny,)

() =Eu |F(Xn) J] Gr(Xw)|,
k<n—1
and
'/V\n(f) = Eu f(Xn) H Gk(Xk;) s
k<n

are called the unnormalised prediction (resp. updated) Feynman-Kac models associated to (G, M). If we
divide these measures by v, (1) (resp. 7,(1)), we obtain the probability measures 1, (resp. 10, ) which are
called the normalised Feynman-Kac models associated to (G, M).

A recursion formula and the motivation for Particle Filtering.

There is a nice way of relating the model 7,41 from n,, through two step procedure which we describe below.
This recursion will motivate a particle approximation for the measures 7, which we will study in depth in
Section [3] We first define the following transformation:

Definition 2.4 (Gibbs-Boltzmann transformation). Let (G,) be a sequence of potentials as described
above, the mappings 1., : Pn(E,) — Pn(Ey,) given by

Pn(n)(dz) = G (z)n(dx),

U(Gn) "

are called the Gibbs-Boltzmann transformations. Here P, (E,,) is the subset of P(E,) consisting of
measures 1) with the property that n(Gy) > 0.

This transformation is merely tilting the measure 1 with a potential G,,, and normalising to obtain a
probability measure again. We now have the following proposition [3] Proposition 2.3.1]:

Proposition 2.5 (Flow of prediction models, ). Let (1), and (,,)n be the prediction and updated models
described above. Then

M+l = Yn(Mn)Mpy1, and fpy1 = Ynp1 (MMpy) -

Proof. First we show the fact that 7, = 1,,(,). Indeed, lets start by noting that:

k<n-—1

With this in mind we can observe that

_ () _ m(Gnf) /(1) _ 1n(Gnf)
Y1) m(Gn)/m(1)  nn(Gr)

Mn(f) = Yn (1) (f)-



Now that we have established this, we can finish off by noting that:

(f) =B [ F(Xn) [] Gr(Xk)

k<n—1

=B, |(Muf)(Xn1) [ Gr(Xp)| =Fn1(Mnf).
k<n-—1

In other words, v, = J,,_1M,. As such, we see that

M (f) = (n-1Mn)(f) = @n—1(m—1) Mn)(f).

Similarly we obtain the recursion for the updated models. O

2.3 A Particle Interpretation
2.3.1 Markov Chain with Killing

We now describe an interpretation of the Feynman—Kac model as the conditional distribution of a Markov
process that has not been killed ([3, Section 2.5.1]). We will interpret potential functions as killing rates.
For this purpose, we assume that the potential functions are strictly positive and moreover bounded above
by 1.

Definition 2.6 (Boltzmann Multiplicative Operator). For a collection of potentials G = (G,,),, we define
the map G, : Bb(En) — Bb(En) by

Remark 2.7. We may view G,, as an integral operator with kernel G,,(x,dy) = Gp(x)0z(dy). In this way,

Gul(f) () = / Go(2)8,(dy) f(y) = Gn(2) f(2).

Notice that [ G,(x,dy) <1, so we may interpret G,, as a sub-Markov kernel.

We can turn these kernels into genuine Markov kernels by adjoining a common cemetery state A to all state
spaces F,,, which we denote by Eﬁ. We then extend the remaining objects as follows:

1. For a function f € By(E,), we extend it to a function on E2 by setting f(A) = 0.

2. For a kernel M,, : E,, x E,41 — [0, 1], we extend it to a kernel MnA : EnA X Ent1 — [0, 1] by setting
MZ2(A,-) = da, and for x € E,, we define M2 (x,-) = M, (z,-).

3. Finally, the extension of G,, is given by the kernel G2 defined as
gﬁ(mn, dyn) = Gn(2n)0z, (dyn) + (1 — Gn(zn))0a (dyn).

Remark 2.8. This extension has the following effects:

1. For MnA . If the process is in the cemetery state, the only possible transition is to remain in the
cemetery state. Otherwise, MnA behaves exactly like M,,. This step is referred to as exploration.



2. For g,?.- if Xy, is not in the state A (i.e. it is alive), then after one step under g,? it remains alive
and equal to X,, with probability G,,(X,,), and is killed (moves to the cemetery state) with probability
1 — Gn(Xy). Moreover,

/ GA(e.dy) = [ GB(x.dy) + / G (&, dy) = Go() + (1 — G (a)) = 1.
En {A}

Thus, G~ is a genuine Markov kernel. This step is referred to as killing.

With this in mind, we define the following transition kernels:

QnJrl Mn+1

Let u € P(Ey) be given, and define Pﬁ to be the probability measure on the canonical path space whose
finite-dimensional distributions correspond to those of a Markov chain with initial law y and transition kernels
Q* up to time n.

Remark 2.9. We may think of the chain (X,),>0 under the law Pﬁ as evolving in two steps:

killing\ )’(: exploration
n

X, X1

This can be interpreted as a Markov process with transitions M evolving in an absorbing medium, where
the potentials G determine the absorption rate at each point.

Proposition 2.10. The updated Feynman—Kac model @“,n associated with (G, M) represents the con-
ditional law of the killed process X given that it is alive at time n.

Proof. Let T denote the killing time of the process (X,,),>0. Then
PXT >n)=P}(Xo € Eo,X1 € Fr,..., X, € Ey)

= / 11(dzo) Q% (o, dy) - - - Q5 (1, dy,)
FEox--xXFEp

:/ 1(dxo)Go(wo) Mi (o, du1)G1 (1) - - -
EoXx-xEnp

= E,u H Gk(Xk)

k<n
This shows that 7,,(1) = Pﬁ(T > n). By a similar argument, we also obtain
ﬁn(f) = E,% [f(Xn)l{T>n}] :
O

Remark 2.11. We refer to the sets G,,1({0}) and G, 1((0,1)) as the hard and soft obstacles at time n,
respectively. Note also that

ma(f) =ELf(Xa) | T=n),  0u(f) = ER[f(Xa) | T > 0],

where Eﬁ denotes expectation with respect to the law under which (X,,), is the killed Markov chain
described above.

10
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Figure 3: Simulation of 500 simple random walks over 1000 steps with two hard obstacles and two soft
obstacles.

2.3.2 Interacting Process Interpretation

In the previous section we say how the distribution flows (7:):>0 could be seen as the law of a Markov chain
at time t conditioned to survive some killing procedure. If this were to be simulated on a computer, this
interpretation would have an advantage of the simulated particles being independent from each other (we
will come to the bad downsides later). In this section we present an alternative particle interpretation for
the distribution flows. This discussion corresponds to [3, Section 2.5.2], since its mostly for completeness,
the reader may choose to skip directly to Section [3]

Proposition 2.12. Let S, ,(z,dy) be defined via

Snp(@, dy) = Gn(2)0:(dy) + (1 = Gn(2))Pn(n)(dy),

where, recall, that 1, is the nt" Boltzmann-Gibbs transformation associated to potentials G. Then, if we
set Kni1. = SnyMyy1, we have that:

1. Ky 1,y are probability kernels E,, x €,11 — [0,1].

2. The distribution flow (n,)n>0 satisfies the relation

n+1 = nnKn—l—l,nn .

Proof. The proof that for any € E,, we have that K, 1 ,(x, Ey,y1) = 1 is a simple calculation which we
skip. We will however, show that 7,11 = 7, K41, Recall from previous discussions that we have already
proved that 1,1 is equal to 1y, (1,) My41. It thus suffices to show that 7,5, ,, is indeed equal to 1y, (1,).

11



Showing this is just a calculation too. Let f € By(E,,), then

(S ) (f) = / 1 (dz) [Gn(2)02(dy) + (1 — Gn(2))bn(nn) (dy)] f(y)

E.xFEy,

= / N (dx) G ()0, (dy) f(y) + / M (dx) (1 — G ()Y () (dy) f(y)
En.xFEny

FEn.xFEny,

B / 1 (d) G () £ () + Pn(02) (f) (1 = 10(Gn))

) M (Grf)

=nn(Gnf) + 1 (G) (1 =nn(Gn)) = ¥u(f)

O

What is the particle interpretation of this result? It all boils down to a choice of a wise probability measure
K, on the canonical probability space:

Definition 2.13. Let (ano En, [0 Ens (Xn)nzo) , be the canonical space, and (K”+17“")un€P(En),n20

be the family of probability kernels described above. For an initial measure ng € P(E,), let (nn)n>0,
satisfy the recurrence relation ny41 = NpKni1y, (i€ the FK distribution flows). Construct with these
a measure Ko on the canonical space under which (X,)n>0 is @ Markov Chain with transition kernels
(Kn+1m+n), that is to say:

K, ((Xo,- -+, Xn) € (dxo, - ,dzy)) = no(dro) K1 p (20, dx1) - - - Koy (Trn—1, dy).

The measure K, is called the McKean measure associated to the kernels (K"Hv#n)uneP(En),nzO'

Remark 2.14. Markov Chains for which the transition kernels not only depend on current position but also
on the current distribution are called non-linear Markov Chains. The reason for this is the following. Say
we have a transition kernel M, 1. Then we know that L(X,,+1) = L(X,,)My+1, so we can think of M1
as an operator. This operator is in fact linear! For if u and v are two measures on (E,,, ), by the linearity
of the integral we have that (u + v)M,+1 = uMp+1 + vMy11. Now, for the case where the kernels M
depend on the current distribution, then we do not in general have (u + v)M, 4, = pM, +vM,. This is
where the term non-linear originates from.

Proposition 2.15. Let (X,,),>0 have law K, as described above, then L(X,,) = np.

Proof. Let f € By(E, ) and denote by Eno the expectation with respect to the measure K,,,. Then
L(X0)(f) = Epo[f(Xn)]

xn UO(de)Kl,no (.’L'(],ditl) Kn,nn,1 (.’lfn_l,dl'n)
E0>< X Ep

/ f(an) Koy, (z1,dxs) - Kn,nnl(xn—lydxn)/ no(dzo) K1 p, (20, dz1)
Ei1x--xFEy, Ey

n1(dw1)

o / Fln)im(dan)

n

12



Remark 2.16. We now have established that the non-linear Markov Chain with dynamics prescribed by K,
has law at time n equal to n,,. But what is the particle interpretation behind this? Well, once again, we can
look at the transition kernel K, 1, and notice that it involves a two-step transition. First we apply Sy, ,
and then we explore according to the original dynamics M1, so let’s think of what S is doing. Recall that

Snp(,dy) = Gn(2)0:(dy) + (1 — G ()0 (n)(dy).

In the particle interpretation, we can call applying S to the measure as performing an ‘“interacting jump”
on the particle side: if the particle is currently at x € E,,, then with probability G,,(x), remain at x (this is
given by the 0,.(dy) term); and with probability 1 — G,,(z), resample the particle’s location according to the
measure 1y, (n,), which depends on the “cloud of particles” n,. This is where the name interacting particle
interpretation comes from. In summary: the dynamics under K,, may be thought of as:

X, intera%jump )?n exﬂng X1,
Where:
1. X,, = X,, with probability G,(X,), and X,, ~ ¥, (1) with probability 1 — G (X.,).

~

2. XnJrl ~ Mn+1(Xna )

13



3 Particle Filtering

After providing a couple of alternative particle interpretations for the meaning of the FK flows, let’s focus on
the question of simulating from these measures, or computing integrals with respect to these measures. The
killing interpretation gives us a straightforward (but naive) way of simulating from 7,,. Simply: for a large
fixed NV, simulate IV particle evolutions: (Xti)tgn, fori =1,---, N that evolve under the killing procedure
described before. Our naive estimator for 7,,(f) would then be:

1
#Surviving particles

N
> A(XE)1{X], survived}. (3.1)
i=1

The issue with this is that in many examples, the event of survival may be a rare event, so that for example
its probability decays exponentially fast in n. What this means is that even if we start with a large number
N of particles, the sum above may be taken with respect to an almost zero number of surviving particles.
We will make this argument more precise in Section 5] but this will cause the estimator [3.1] to have a relative
variance that grows exponentially, which in effect makes the approximation terrible.

However, we can be a bit more clever and exploit the structure of the measures 7),, to come up with a clever
way of using an approximation to 7, to give an approximation to 7),+1. This will be the idea of the Particle
Filter, and the story begins by recalling a key result, namely that the measures satisfy a recursion

M1 = Yng1 (T M)

We will see how this recursion naturally motivates the so-called Particle Filter, an algorithm that constructs
an approximation to 7, through particle simulation. We will then study the convergence and stability
properties of this algorithm.

3.1 Motivation of the Particle Filter

Suppose we have a particle approximation to 7),,_1, defined by
N
-1 (dx) = N Z 6Xfl_1(dx)7
i=1

Where N is some presumably large number of particles. Note that we are not assuming the particles X’
are independent. For the purposes of this motivation section, we simply assume that the empirical measure
they generate approximates 7,1 sufficiently well. It is then natural to assert that

Mn(dz) ~ wn(ﬁfz\[fan) (3.2)

We can push this approximation one step further. Observe that
1 & ‘
ﬁfy_an(dm) - N Zan( n—1dz).
P

An unbiased way to approximate this mixture of measures is to sample X ~ Mn(X}'l_l,dx) and write

N
1
N ~ )
M1 My (dz) = i ;:1 Oxi (dx).

14



Substituting this approximation into ({3.2)), we obtain
N
N
(Z Gn XJ)) i

Finally, we continue this approximation scheme as follows. Since this approximation to 7),, is itself a weighted
mixture of point masses, we can produce an unweighted particle approximation by resampling: for each i,
select one of the particles X}, .. XN—say particle j—with probability Wﬂ and define XZ equal to X7
This yields the empirical measure

1 N
N > 0z
=1

Which we claim approximates 7),,. In summary, starting with an empirical measure that approximates 7,,_1,
we have produced another empirical measure which approximates 7,,. At this point, the procedure can be
iterated indefinitely by repeating the steps described in this motivation section. In fact, this is precisely the
Particle Filtering algorithm. What remains is to state it formally and to make the above approximations
rigorous by showing that they are valid in the particle limit N — oc.

3.2 The Particle Filter

We now state the definition of the Particle Filter (PF) algorithm:

Definition 3.1 (Generic Particle Filter). A Particle Filter is given by the following algorithm:
Require: A Feynman-Kac model {10, (M), (G:)}, a fixed number N of particles to simulate, a resampling
scheme, and a finite time horizon T
1: forn=1to N do
Sample X' ~ po.
Compute W
end for
fort =1to T do
forn=1to N do
Choose ancestor: A} ~ Resample(th_:Jf )
Sample X]' ~ Mt(Xt 1, dzt)
end for
10:  Compute W}tV
11: end for

© % N A WD

Remark 3.2. There are several ways that the resampling step in line 7 could be implemented. The one
we will focus on here is the so-called multinomial resampling scheme, which simply chooses A} = j with
probability I/Vtﬂ1 i.e: we choose the ancestor of particle n to be particle j with probability equal to the
weight of particle Xf_l.

15



10,0 Trajectories of X[ fort=1,--, Twith G=1on [—k, k] and G = 0.5 outside

7.5 4

space (2)

-10.0

time

Figure 4: Trajectories of the Particle Filter algorithm described above (with multinomial resampling) with
500 particles. The reference measure for the Markov chain is that of a Simple Symmetric Random Walk
on Z, and the potentials G; are all equal to G(z) = % (1 + 1{|z\gk})- One trajectory shown in full opacity,
and the remaining trajectories are shown in reduced opacity. We see see that particles don't tend to spend
much time in the regions of low potential, since the resampling step pushes particles towards areas of high
potential.

In light of the motivation section, it is natural to interpret the final collection of particles (X7.),<n as the
output of the algorithm, from which we can consider objects such as

1. An approximation of 7jp_1 My (dx) given by

N
1
~ > oxp(dx). (3.3)
n=1
2. An approximation of 77 (dx) given by
N
Ap (do) = Widxp(da). (3.4)
n=1

Several questions of importance arise when looking at these estimates:

1. What kind of convergence results can we derive for 7Y (f) where f € By(Er)? As we will see, it will
turn out that 7% (f) — 7r(f) as N — oo in £? norm as well as in the almost sure sense.

2. Can we say anything about how the error 7Y (f) — 7(f) is distributed? As we will see, it will turn out
to be Gaussian under appropriate rescaling.

3. What is the asymptotic distribution of the error of our approximation?

16



3.3 L2 convergence

While proving that 7Y (f) — 7:(f) in £2 norm is not technically difficult, it is easy to get lost in the calcu-
lations without a clear understanding of why each step is performed. The argument is inductive in nature.
Specifically, we first show that if Approximation [3.3]is accurate at time ¢, then Approximation is also
accurate at time t. We then show that if Approximation [3.4]is accurate at time ¢, then Approximation
is accurate at time ¢ + 1.

To clarify how these approximations are related, and how one leads to the other, it is helpful to think
in terms of “triangles” in the space of measures. In the triangle below, we illustrate how to pass from
Approximation to the object it aims to approximate via two intermediate steps. The first step incurs
error due to the approximation of the complicated weights (in particular the denominator). The second step
incurs error from approximating 7j;—1M;(dx) by the empirical measure - Zf\il Oxi(dx).

Error incurred in approximating 7,1 M;(dx) by = Z7N:1 dxi(dx)
. (taken care of by Induction hypothesis)
Yr(fe—1 My)

Gi(z N i
\ m% Ziil 5Xt(d’1")

Error incurred in weight normalisation (taken care of by Lemma and Induction)

And on the triangle below, we illustrate how to pass from Approximation 3.3 to the object it tries to
approximate: 7;M;11: the first error is incurred due to a “Monte-Carlo” error (called Monte-Carlo error

since + le\il 5X;'+1 is quite literally a Monte-Carlo estimate of the measure (sz\il Wtiéxz(da@)> M;+1) This

will be taken care of by Lemma . The second error is due to approximating 7j; by Zi\il Wtiéxti. This will
be taken care of by the induction hypothesis.

Error incurred in approximating 7; by Zf\il Wt"(SX;'

Ne M1 \(\j

1 N i
N i:15Xt+1

SN WMt (X da) = (L, Wiy (da) ) Mia

"Monte-Carlo error”

17



Proof of £? convergence

First of all, a quick remark: as hinted in the description of the algorithm (cf. Definition , there are several
ways we could go about resampling the particles, but to go in line with the discussion in the motivation
section, we will work in the case of multinomial resampling, i.e: P({A} = m}|Fi—1) = W™, where (F;)t>0
is the filtration generated by the particle process (Xti)igN,tEO- A key observation is that by conditioning on
the ancestor:

WE

P (X[ € dz|Fioq) = P (A} = m|Fi—1) P (X[ € dz|A} =m) (3.5)

1

m

I
WE

Wi My(X{"y, dx) (3.6)
1

3
I

we obtain an expression for the conditional distribution of X;* given the history of the process up to time
t — 1. In particular, we see that conditional on F;_1, the particles at time ¢ are i.i.d, with distribution equal
to the one above. We will now start working towards proving the following: [1, Proposition 11.3].

Theorem 3.3 (£? convergence). Suppose that the potential functions (G;) of the Feynman-Kac model
are bounded and strictly positive. Then, for any time t there are constants c¢; and ¢, such that for any
f € By(E:), we have

RN SR
N;ﬂxt)—m_lMt(f) SaN (37)
(replacing -1 My by o) and
N 2 2
D WEFXE) = (f) gcz”";\';”, (3.8)
n=1 2

As explained in the discussion above, to prove these statements we will need a pair of Lemmas:

Lemma 3.4 (Monte-Carlo approximation). Let f as above. Then

1 N S
NZf(Xt”) =) WEL(Mf)(X])|| < annio-
n=1 n=1 2

Proof. The proof simply relies on the observation we made in equation [3.6] Then, we observe that

1 & 3
B |0 Y SO0 B | = BUDIFi] = [ S WM, dn) @)
n=1 nm=l
N
= WP (Mef)(X]y)
n=1

18



Thus, we see that:

N N 2 N N 2
1 n n n 1 n n n
N Z X)) = Z Wit (M f)(X{L,)|| =E |E (N Z X)) = Z th(Mtf)(Xt1)> Fi1
n=1 n=1 2 n=1 n=1
(3.9)
1
— B | Va7 (7)) (3.10)
1
< = . 11
< <l (3.11)
where in this last inequality we have used the that Var(X) < EX2. O
Now we need a second Lemma, which quantifies the error made by normalisation of the weights:
Lemma 3.5. Define the normalised potentials G; = %, where Uy = ;1 M(Gy). Then
N 1 N z 1 2
> WX - N D G| < IfIZ N > G -1
n=1 n=1 2 n=1 2
Proof. The proof relies on the following simple observation. If we multiply and divide by ¢; we obtain:
N N A
P n=1 Ge(X{") f (X7
ZWtf(Xt):Z LTnot 75 ‘) (3.12)
n=1 Zn:l Gt(Xt )
and so we see that
N 1N N 1N
SOWRFE) =~ S0 GNP FXF) = S WX (1 - @(Xf))
n=1 n=1 n=1 n=1
1.
< £l (1 M ee )
n=1
squaring and taking expectations gives the claim. O

Now we are ready to prove Theorem [3.3]

Proof of Theorem|[3.3. The idea is as follows: we will show that the bounds hold by induction on t. We
do so by showing that [3.7] at time ¢ implies [3.8] at time ¢, and that [3.8] at time ¢ implies [3.7] at time ¢ + 1.
Notice that the base case holds due to a standard Monte-Carlo estimate for i.i.d random variables. Let’s start.

We assume [3.7] holds at time t. Then

E

N N
S WA — ) = 3 WEHKT) - = 30 G (3.13)
n=1 n=1

n=1

_|_
|~
WE

Gu(XI)F(XT') = me(f) (3.14)

3
Il
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Since E[(X +Y)?] < 2 (EX? + EY?), we can take each of these terms separately. Note that term
can be taken care of by using Lemma[3.5] Then we note that

1 X
N Z Gt(th) -1
n=1

and this can be taken care of by our assumption that inequality holds at time ¢, with f = G;. In other
words, we get that

2 N

1 _ R _
¥ 2 G(XD) = i1 My(Gy)

n=1

= If11%

2

[y

)

2

N

> - zcw xp)

=1

G 2
<1 e jV”“ (3.15)
2

Continuing, we now look at the second term u The trick is that 7;(f) = m_1M; (G x f), where Gy x f
is usual multiplication. Then we can apply the assumption thatn 3.7| holds at time t to the function G x f,
and get that

2 = 2
<o MG Sl _

HfH
N et || Ge||% (3.16)

N
N; X{) = (/) 2

Thus combining E[(X +Y)?] < 2 (EX? + EY?) with bounds and gives that the bound holds

with ¢, = 4¢; HétHoo' Now that we have proven that bound at time ¢ implies bound at time ¢, we
are going to show that bound at time ¢ implies at time t + 1. Then we will be done. In a similar
way, we simply add and subtract an intermediate quantity to our target quantity so that we can apply a
triangle-like inequality and estimate each term individually:

N
sz 1) — Mg (f) = NZ]‘ X7) ZWt (M1 f)(X]) (3.17)

n=1

(M1 f) (X)) — My (f) (3.18)

i t*j::

The term [3.17] we can bound using Lemma , which gives that

N N 2
1 n n n 1
5 2 fXH) = Y WM XD < 1115 (3.19)
n=1 n=1 2
Then, term can be bounded using bound [3.8] at time ¢ with the function M;;1f. Noting that
(th+1)(f) =7t (Mys1£)). Finally, its easy to see that || M1 f]%, < ||f]|%, and so we get
n ny_ = 112
(M1 f)(XY) =M1 ()] < ¢ N (3.20)
= 2

Finally, combining once again E[(X + Y)?] < 2(EX? + EY?), with bounds and [3.20, we get that

N
1 " . /
N Z FXE) = TeMea ()| < 2(1+ )= ” H
n=1 2
which is bound [3.7] at time ¢ + 1, hence finishing the proof. O
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3.4 Almost Sure Convergence

The idea for this proof is once again to perform a two-step induction proof, as well as the derivation of a
fourth moment bound to replicate a step in the proof of the Strong Law of Large Numbers.

Theorem 3.6 (Almost Sure Convergence of Particle Filter). Assume the potentials (G;) satisfy the same
assumptions as before. Then:

1. For any f € By(Ey), we have that for all t, almost surely as N — oo:

N

5 O FOXE) = At M) (321)

n=1
writing -1 Mo := po.
2. For any f such that Gy x f € By(E:), we have that for all t, almost surely as N — oo:

N

S WRAXT) = fl(f) (3.22)
n=1

Remark 3.7. Note that if f € By(E:), then Gy x f € By(E;) because the potentials are bounded by
assumption. Thus the second statement holds for a larger class of functions.

Proof. It is clear that convergence statement holds at t = 0, since X are i.i.d from pp, and so we
apply the Strong Law of Large Numbers. Now assume that convergence statement holds at time ¢, let
us show that holds at time t. This is simply due to the fact that we can write

N T Gl F(XD)
& 2o GH(XP)
and both numerator and denominator converge: to 7j;_1 M;(Gy x f) zﬁ}(f) and M1 M(Gy) = 1 re-

spectively, using our assumption of with the functions G; x f and G respectively. This shows that
statement [3.22] holds at time ¢.

)

N
> WX
n=1

Now let's assume that statement holds at time ¢t — 1, let's show that statement holds at time ¢.
The idea is to consider for n = 1,--- , N, the random variables

N
2 = FXP) = D W (Mo f)(XPy).

n=1

Recalling from equation the shape of the distribution of the X/"'s conditional on F;_1, it is easy to see
that conditional on F;_1, the Z}*'s are centred i.i.d random variables. Now, consider:

N 4
E (ZZ?) Fia| =Y ElZiZ]lZf7; | Fil, (3.23)
n=1

i7j7k:)l
Sine conditional on F;_1, the Z[''s are i.i.d and centred, there won't be many surviving terms, only:
1. Those where i = j = k = [, of which there are N terms, and each of them will contribute an

E[(Z})* | Fi—1] to the sum.
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2. Those where two indices are the same, and the other two indices are the same, but different. E.g:
i=j=1,and k =1=2. Each of these terms will contribute an E[(Z})? | F;_1]?, and there will be

<;)§:ZI:6N(N—1)

i=1 j#i

Effectively, becomes:

N 4
<Z Zf) Fio1| = NE[(Z)* | Fioa] + 6N(N — DE[(Z)? | Fioa)
n=1

Now, since we are trying to prove statement |3.21} we can assume f € By(E:), and so each of these
expectations is bounded by some absolute constant ¢, which means that

N 4
(ZZ?> Fio1| < eN?,
n=1

so by taking expectations, we see that the usual fourth moment of Zf:f:l Z} also shares the same upper
bound. Now we can replicate the proof strategy of the Strong Law of Large Numbers under assumption of
bounded fourth moment. Namely: let € > 0 be given, then

P(;f Jj >§ EKZLZ;LY] N2 1

ZZZL > € =C—
n=1

etN4 = et N4 N2’
which is summable in NV, and so by the Borel-Cantelli Lemma, almost surely:

1 N
NZZ{L—A).
n=1

However,
| N 1N N N
NZZtRZNZf(Xf) NZZ Wi (M f)(X{24)
n=1 n=1m=1
N
NZf (XP) Z L (M f)(XEy).

And due to our assumption of holding, we can choose the function to be M;f and we get that the
second term on the last equality above, converges almost surely to (7;—1M;)(f). In other words, we have
shown that almost surely:

N
Z (-1 Me)(f),

completing the proof. O
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3.5 A Central Limit Theorem

In the previous sections, we studied how the unweighted (resp. weighted) empirical measures given by the
particles (X});<, are good approximations to 7j;—1 M; (resp. 7j;) as the number of particles became large.
Since these approximations are random, the errors themselves will also be random. We would now like to
understand the asymptotic distribution of these errors. This will be given by a Central Limit Theorem for
Particle Filters.

Theorem 3.8 (CLT for Particle Filters). Under the same assumptions as before (potentials are positive
and upper bounded), we have that for any f € By(E}):

© 3 FXP) ~ Rea M) | = MO, () (3.24)

n<N

and for any f such that Gy x f € By(Ey):

ST WPHXT) - me(f) | = N0, Vi) (3.25)

n<N

where the variances are defined recursively by:
1. %(f) = Var,,(f)-
2. Vi) = Ve (Ge x (f = () fort > 0.

3. Vi(f) = Vim1(Myf) + Varg, ,ar, (f) fort > 1.

The proof strategy, as usual, will consist on this " two-step induction”.

Proof. Note that at ¢ = 0, using the convention 7,1 M; = ug, we get that statement holds by the
normal CLT. Now we will show that at time ¢ implies [3.25] at time ¢. This will just be an application
of Slutsky's Theorem. Note that

) Y (3 Sen GO = GUXD))
%Wt FXE) —m(f) ] = %anNét(Xf)
VN (}v ew Gi(XI)FXD))
N Zn<N Gt( tn)

Then, using the assumption that Gy x f € By(E;), [3.24] implies that the numerator converges to a
N (O,f/(@t x (f — ﬁt(f))) The denominator converges almost surely to 1 by the almost sure conver-

gence Theorem, and so the ratio converges to a N (0, Vi(f)), showing that holds at time t. Now we
will show how at time £ — 1 implies [3.24] at time ¢.

Let’s first state the ingredients we'll need and then prove them individually.
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If we define the following two quantities:

1 & Y
(N Z — Z th_l(Mtf)(Xg’L—l)> )

and N
Ay = VN <Z W (M f)(Xy) — ﬁt—lMt(f)> ;
n=1
then we quickly see that the characteristic function of our object of interest, i.e:
1 o~
~ 2 FXE) =i Mi(f) |
n<N

is simply Ef[exp{iu(A; + Ag)}]. Since Ay is Fi_; measurable, we can take it out of the conditional
expectation and see that

Elexp{iu(A1 + Az)}] = E [exp{iuAs}Elexp{iul;} | Fr_1]] .

Now, observe that Ay is of the shape of statement with the choice of function M; x f but at t—1, and
so we know that Ay = Y, where Y ~ N (0, V;_1 (M, f)). Now we state the main ingredient of the proof.
Suppose we have shown that

2,2
Elexp{iuA1} | Fi1] B exp <_02u > (3.26)

where 02 = = Varg, ar,(f). Then by Slutsky’'s Theorem, and the Continuous Mapping Theorem:

o?u?
exp (iulq) Elexp{iulA1} | Fi—1] = exp <iuY - ) .

But now, since everything above is bounded, (in particular less than 1), we can take a continuous function
that is equal to 1 on the unit disk and then decreases to zero, in conjunction to Portmanteaus Theorem, to
assert that

E [exp (iuls) Elexp{iuAi} | Fi_1]] — E [exp (iuY - "22“2)] .

But now since Y was a Normally distributed random variable, we know how its characteristic function will
ot

look like, and so we see that the right hand side above will actually be exp (M) In other words, the

characteristic function of

5 )~ M)

n<N

converges to the characteristic functlon of a N'(0, Vi(f)), so by Levy's Theorem we are done. Therefore all
that s remaining to do is to show . We can start by noticing that Ay is nothing but v N ZN 4] =

\F ZN Z}', where Z}* is as we defined previously:

N
7y = [(XP) = > W (M) (X ),

m=1

24



and that these where conditionally i.i.d given F;_;. From this we notice that Elexp(iul) | Fi—1] =

1 .
(E[exp{iuN"2Z}} | F;_1]). Recall that if two complex numbers u, v have norm at most 1, we have the
inequality [u"Y — v™| < N|u — v|. From this we gather that almost surely:

o?u?

>‘ <N ‘E [exp {mN—%Zg} | fH] — exp (-‘j}\‘f)‘ (3.27)

So now we'll look at the first term inside this absolute value. Recall from the Taylor expansion of e® that

E [exp{iuA1} | Fi—1] —exp (—

|exp(iz) — 1 — iz + 22 /2| < |z|>/6.

We may use this to see that

2
Elexp{iuN"2Z}} | Fioq] = 1+ iuN"2 E[Z} | Fio1] — — E[(Z})? | Fi1] +Ry (3.28)
0 :20'12\,

where |Ry| < GJ‘CLL?;QEHZQP | Fi—1]. In other words:

2

QNJN %0 (3.29)

N |E exp{zuN 2Z}\.7:t 1}—14—

To put this together with [3.27] we just need to bound

2,2
N‘l—aN—eXp(—(TQJI\?)‘:

So if we can show that 0]2\, LA o2, then combining with will give . Which will finish the proof.

To show this, we write

u? 2 -2
IN (UN—U)+O(N )

(3.30)

o} =B [(Z})* | Fii] (331)
N 2
=E (f(Xt”) = Wt’il(Mtf)(XZ“_l)> Fit (3.32)
n=1
N 2
=E[f(X})? | Fea] - (Z WL (M f)( f_1)> (3.33)
n=1 ,
N N
=Y Wi (M f2)(X70) — | DO W (M f)(X7y) (3.34)
n=1 n=1
Ay By

Here step comes from the fact that the second term is F;_; measurable. The last step comes from
the fact that we know the distribution of X;* conditional on F;_;. We are almost done now. From the
assumption [3.25| at time ¢ — 1, we know that

VN(Ay — f—1 (M f?)) = N(0,---).

From Slutsky's Theorem, this means that in fact Ay — 7. 1(Mtf2) = 0, but convergence in distribution to
a constant implies convergence in probability, and so Ayn L N1 (MEf) = - 1Mt(f2). In a similar way,
By L M—1M;(f). From this it follows that O'N L M1 My (f?) — (1 My (f )) : 0. As required. a
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4 Stability of Particle Filters

In the previous sections we saw some Convergence Theorems related to Particle Filters (cf. Theorems ,
. The downside of these Theorems is that they work in the particle limit N — oo and for a fixed time
t > 0. In practice however, a Particle Filter will be implemented by fixing some N > 1 to be your number
of particles, and then iterate the algorithm until some target time ¢t. The CLT told us that

VN (@GN (f) = Wl f)) = N0, Vi(f)),

which informally says that 7" (f) —7:(f) = N (0, %) What is the issue here? Well, from the statement

of the CLT we know that the variances V;(f) are defined recursively, and a priori it is not clear whether they
behave "well” as ¢t — oco. Indeed, if V;(f) is unbounded as ¢t — oo, then our approximation actually keeps
getting worse and worse as time progresses, given that we have a fixed number of particles. It is crucial to
understand the growth of V;(f). Let's start with the following Lemma, which will give us an (albeit ugly)
explicit representation of the variance.

Notation. To avoid cluttering the document with parenthesis, for a measure  and a function f, we will
write f instead of u(f).

Lemma 4.1 (Representation of the variances). The variances V() as defined in the statement of Theorem
3.8 satisfy the following equation:

t

Vilf) = S M) [{GuBasralf — )Y

s=0

where Rs+1:t = Rerl o Rs+2 O:-+0 Rt(f), and Rt(f) = Mt(ét X f)

Proof. The proof is by induction. The base case ¢ = 0 holds by looking at the CLT (Theorem , and
noting that Vo(f) = Var,,(Go(f — M:f)). Recall that we use the convention 7_1 My := po. Then note

that 110[Go(f — 7o.f)] = 0 since 7 := Gopio, and so Var,, (Go(f — T f)) = po [{Go(f - ﬁof)}ﬂv which is
exactly what the claim entails for t = 0.

Assume now that the claim holds at time ¢t — 1, let's show using the recursion from the CLT that the claim
holds at time ¢. From the recursion, we have that

Vi(f) = Vier (My(Gy x (f =7 f))) + Varg,_,ar,(Ge x (f =T f)) (4.1)
Re(f=mef)

Now we examine each term individually. From our Inductive Hypothesis, we see that:

t—1

Vit (Re(f = ef)) = D (151 M) {{GsRsH:tq (Be(f = ef) — -1 (Re(f — ﬁtf)))}ﬂ (4.2)

s=0
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Now observe something important: ;1 (R f) = (i_1 M) (G.f) = 7 f, therefore, the term 71 (R (f — Wi f))
in [4.2]is zero, and so [4.2] actually becomes

-1
Viert(Re(f = f)) = ) (Ms—1Ms) [{GsRsH:tq (Re(f — ﬁtf))}Q] (4.3)
s=0
-1
= > 1 M) [{GoRorre (f — )} (4.4)
s=0

This is almost what we need. Let's look at the second term of 4.1l Since
N1 My(Gy x (f =1 f)) =0,
(this is how G is defined), we see that
~ N . ~ 12
Varg, a, (Ge X (f =i f)) = -1 My [{Gt(f - 7775)} } )
which combining with [4.4] finishes the claim. O
4.1 Strongly Mixing Kernels

Let's recall some important definitions.

Definition 4.2 (Total Variation distance). Let P and Q be two probability measures on some measurable
space (E, &) we define their total variation distance as

P — Q| 7y := sup [P(4) — Q(A)].
Aeg

Remark 4.3. There are several equivalent definitions of total variation distance. One that will be useful to
us is the following:

P —Qll7y = sup [P(f) —Q(f)I,
Af<1

where Af = sup, , |f(z) — f(y)| is the maximum variation of a function. If P and Q both admit densities
p(x) and q(x) with respect to some common measure dx, it is also true that

IP-Qllny = [ Io(e) ~ ala)lde

Definition 4.4 (Contractivity Coefficient). Let M : E,, x E,41 — [0,1] be a Markov kernel. We define
its Contractivity Coefficient py; as

pu = sup [M(z,-) = M(y, )| 1y
x7y
We call M strongly mixing if ppr < 1.

The contraction coefficient of a Markov kernel has the following functional interpretation
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Lemma 4.5. Let M be a Markov kernel with contraction coefficient p. Let ¢ € By(E). Then

A(Me) < pAp

Remark 4.6. In a probabilistic sense, we can interpret this as follows: if a Markov chain (Xy)n>1 has
transition kernels M, then the maximal oscillation of the function E,[p(X1)], i.e: ¢ evaluated after one
step of the chain, is smaller than the original maximal oscillation times a factor p.

Proof. First we note that for constants ¢ > 0, A(cf) = cA(f). Thus

A(My) = Ap x A <M <A¢¢)> .

> (0r(2)) =l (v 2) (o 20|

< sup sup |M(z,¢) — My, 9)|
z,y A¢<1

= sup HM(JJ, ) - M(yv ')HTV < P
w?y

Now note that

4.2 Asymptotic Stability of Variances

We will work under the following two assumptions:

Assumption 4.7 (Kernels). We assume that the Kernels (M) of our Markov Process X; all admit a
density my(x¢|xi—1) with respect to some fixed measure dx and that there exists a constant ¢y > 1 such
that for all t,z¢, x4y, 2,_4:
mt(l’t|$t71)
Lt <o
m(@e|zy_y)

It turns out this assumption is sufficient to guarantee that the kernel is strongly mixing:

Proposition 4.8. /f Assumption is fulfilled, then the kernels M, are strongly mixing.

Proof. We use the equivalent expression for TV distance

HMt('thlv ) - Mt('I:f—la

'>HTV = Sjp My(xi—1,A) — Mt(x;—l, A)

and observe that

My(xi—1, A) — My(x}_1, A) = / (mt(xt,l,x) - mt(:ng_l,:v)) dx
A

<l-¢p
where we've used the fact that the ratio of the densities is bounded below by 1/cj/ O
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Assumption 4.9 (Potentials). The potential functions (G;) are uniformly bounded, i.e: there exists

constants ¢; and c¢,, such that for all t:
0< <Gy <ey.

And the result we will now work towards proving is the following:

Theorem 4.10 (Asymptotic Stability of Variance). Under assumptions[4.7 and[4.9 we have that for any
f € By(Ey), the variances Vi(f) as defined in the CLT [3.8 are bounded uniformly in time.

In order to progress with the proof of Theorem [4.10, we first need to make a detour and discuss how the
Feynman-Kac measure Q; can actually be viewed as a the law of a Markov process (Zp, -+, Z;) up to the
given time.

4.2.1 Feynman-Kac measure as a Markov measure

Proposition 4.11. Let Q; be a Feynman-Kac measure as defined earlier. Q. is a Markov measure with
initial law "
Qo¢(dzo) = fHO:t(xo)Go(wo)Mo(dwo)
t

and transition kernels

Hs:t('rs)
s—1, s) — 7Gs s—1,4s Ms S— 7d s)-
Qsi¢(Ts—1,dxs) Hy 1a(2s 1) (Ts—1,2s) Ms(25-1, dz5)

Where Hs.(z5) is defined by

5l = / H Gi(zi—1,z) M;(zi—1, dx;), s<t
At-s i=s+1

and -Ht:t =1.

Proof. We verify that Qglt(dxo) is a probability measure. Indeed:

/X Qoj¢(dzo) = th/X /Xf (H Gi(xi—laxi)Mi(xi—ladxi)> Go(wo)Mo(dzo) = Q:(dzo) = 1.

1
i=1 Xt

Let's verify that Q;(7s—1,) is a probability measure. For this we need to note the following recursive fact:

/ Hsit(IS)GS(xS—la xs)Ms(Q:s—la dws) =
X

t
[ [ L el Mo, )G, 20 M, di) =
XX

¢
/ H Gi(xi—1,x) Mi(xi—1,dx;) = He_14(x5-1)
Xxt—(s—1) i

from this calculation we see that Q;(zs-1,-) integrates to 1. Finally, the fact that Q; is the product of
the initial measure and the Markov kernels follows from the telescoping of the product of all the Hy;. 0O
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Remark 4.12. The kernels Q,; depend on t, hence why the notation emphasizes this dependence. More-
over, we can interpret the quantity Hq.(xs) as the expected value of the product of all potentials from time
s+ 1 up tot of the Markov process X started at time s at position x5, which evolves with kernels { M;}.

The connection between this Markovian view of Q; and the whole story of the variances is due to the
following proposition. Recall from Lemma that we were considering a sum of integrals of objects of the
form Rsi1.4(p), where Rgy1. := Rsy10---0 Ry, and Ri(p) = Mi(Gy X )

Proposition 4.13. With Ry, Q) as defined before, and H,. defined as the Hy; above but with G
instead of G, we have that

Rs—i—l:t(@) = Hgy X Qs—i—l:t\t(@)a

where Qs+1:t|t(90) = Qs+1\t T Qtlt(@)

Proof. Recall from the definition of the kernels (),; that
Hs:t(xs)
Hs—l:t(frs—l)

We can replace the H by the H, as well as the G by the G, so long as we also replace the definition of the
initial law to drop the L;. Then we see that

Qs|t(xs—17dxs) = Gs(xs—lvxs)Ms(xs—lvd*rs)-

Qua () (s 1) = Hl() / [ GGt 20 Milaic1,de) (o)

rearranging gives that H_1.¢(#s-1)Qsu4y¢(0) (£s-1) = Ra:t(0)(25-1) as required. O
We need one last fact about the Markov process that gives rise to Q; before moving on with all the

ingredients of the proof.

Proposition 4.14. Let assumptions[4.7 and[4.9 hold, then the Markov Process defined by having law Q;
is strongly mixing.

Proof. Since we are assuming that the kernels M; admit densities m(z¢|z;—1), we see that the kernels Qs‘t
admit a density ¢s(zs|zs—1) given by

Hg.1(xs
QS(-TSL'Esfl) = t(x ) )Gs(xsflatfs)ms(l‘sm‘sfl)-

Hsflzt(xsfl

Observe how

Hs:t(xs) = /Gs—i-l(xs,xs—&—l)ms—&—l(xs—i-l’$S>Hs+1<ms+1)dxs+1

c
< ;CM/Gerl(x,saxs+1)ms+1($s+l‘x;)Hs+1(xs+l)d$s+l
c
= lCMHS:t(iL';).
Cl
and so ,
QS(ZES|5L‘371) _ H5_1<$S_1)m5($5|$571) < CGC2
qs(ws| 7l _y) Hs q(w5-1) mg(ws|ol_y) — M
where ¢ = €. Therefore, by proposition , we are done. O

We may now progress with the ingredients of the proof. First, a couple technical lemmas:

30



Lemma 4.15. Let ¢ and ¢ be two continuous and bounded functions, with ¢ > 0 and ¢ satisfy sup ¢ > 0
and inf ¢ < 0. Then

A(p) < [[¢lle Alw)

Proof. Recalling from the definition that A(f) is sup, , |f(z) — f(y)| = sup, f(z) —inf, f(y). It is clear
that sup, ¢ (z)p(xz) < ||[¢[ sup, ¢(x). Now notice, that since ¢ > 0, infyp > ||9] inf . Indeed:
If inf o = 0, then since ¥ > 0, inf 1) = 0. Otherwise, once again using non-negativity of % and the
assumption that inf ¢ is now strictly less than zero, it will follow that inf )¢ > ||9)|| inf . This finishes
the claim. O

The next Lemma just says that any value of a bounded function ¢ lies within £Ap of its average.

Lemma 4.16. Let ¢ € Cy(X) and assume there is a measure P for which P(¢) = 1. Then

[Plloe <1+ Ap.

Proof. For all z,z’, we have that |¢o(z) — ¢(2')] < Ay, and so

p(x') = Ap < p(x) < p(a') + Agp.

Now take expectation with respect to X’ ~ P and we see that 1 — Ap < ¢(x) < 14 Ayp. This gives the
claim since —(1+ Ap) <1 — Ap. O

Remark 4.17. If there is a measure for which the integral is actually zero, then the lemma really does say
that the infinity norm is bounded above by the total variation of the function.

The final technical Lemma of the proof is the following (cf. [I, Page 183])

Lemma 4.18 (Bound on HHs:tHoo)' We have that

t—s

|1l < TT (1 + prroiyeq)
=il

Now we are ready to state and prove the main Theorem of the section.

Proof of Theorem[4.10. We have the following:

A(Rsy1:4(9)) = A(Hst X Qoiras(9))

HHstH Qs—l—l t|t ))

H stHOOpZQ SA( )

where the first equality is due to Proposition 4.13] the middle inequality is due to Lemma and the

final inequality is due to iterated application of Lemma [4.5] Now we will use this as well as the bound from
Lemma [£.18] in the result we obtained in Lemma [4.1] to show the Theorem. Recall that

IN A

t

Vilf) = (M) [{GuRopnalf =)} (4.5)
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and notice that since 75(Rs+1(f)) = Ns(Ms41Gsy1f) = Ns1(f), we have that 75 (Rs1.4(f — e f)) =
m(f — mf) = 0, and so there is a probability measure (i.e: 7);) under which Rsi14(f — m.f) has
zero mean, whence it follows (replicating the proof of Lemma with a zero instead of a one) that
| Ro1:6(f — e f)ll oo < ARgy1:4(f — e f). Now using the calculation above, it follows that in fact

|Rsq1:t(f — 0ef) ] H ( + pMpZQ_ch) pgSAf

Plugging this into by taking out || Ry 1.4(f — 7tf)||%, from the integral, we get that

t [t—s 2
Vi(h) <) ( (1 + pupy CG> P SAf) (Ms—1M)(G?)

s=0 \i=1
< (AF)2e2 i 2 2(t-s)
< (Af) CGZH(1+pMpQ CG> )
s=01i=1

where the last inequality follows from the fact that G; = G‘ < C“ and ¢y = 1My (Gy) > ¢;. Now we can
just complete the proof by noticing the following trick:

t t—s
Vi(f) =(Af)*cg > exp (2 > log(1+ pMpZQICG)> g™
5=0 i=1
t t—s )
§— t—s
< (Af)Peg Z exp <2PMCG Z [26) 1) pQ( )

s=0 =1
2pnrea 1
< (Af)?c exp < > X .
¢ l—pg) 1-0p

which is uniformly bounded in time. O
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(L

Summary s. Let us summarise the previous two chapters on Particle Filtering:

1

We were interested in computing an integral of the form 1.(f) for some f € By(E;), where 7 is the
updated Feynman-Kac model.

From Proposition we know that the sequence of models (7:)¢>o satisfy the recursion given by
M+l = Una1(MeMyi1). As discussed in Section this recursion motivated us to successively use
approximations, so that a particle approximation of 1, yields a particle approximation to 71 1.

This intuition was formalised in the Particle Filter Algorithm (cf. Definition , whose inputs are the
ingredients of an FK model, i.e: an initial law pg, some potentials G = (Gt)¢>o and some transition
kernels M = (M;)¢>0, as well as a number N of particles to simulate. This algorithm outputs at time
t a collection of particles (X});<n.

In the next two sections, we saw how these particles could be used to construct approximations to
N:Myy1 and Tyy1. In particular, we saw that their integrals against test functions converges in £? and
the almost sure sense to the “correct integrals”. We saw how the proofs had a “two-step recursion”
nature, and in the proof of the £L? case, we saw how this proof structure reflected our intuition of how
the errors propagate in the successive approximations.

We then saw how the error 0N (f) — n:(f) was approximately Gaussian for large N, with variance
%, where Vi(f) was introduced through a recursive relation. This formalises our intuition, that for
a larger number of particles and a fixed time horizon, the precision of our estimates will be better.
However, the question remained whether as t — oo, Vi(f) would remain bounded, for if it didn't, it
would mean that as t grows, the approximations created by the particle filter would get worse and
worse.

This last question was answered in the positive in Section [4, where we saw that under some mixing
conditions on the kernels and some further regularity on the potentials, V;(f) was uniformly bounded
in time.
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Figure 5: Simulation of 100 i.i.d copies of a SSRW killed when exiting the interval [—10, 10] after 500 steps.
From this realisation, only one particle has survived.

5 Variance Reduction by Changing Reference Measure

Notice that the Particle Filter could be thought of as a kind of mechanism for reducing variance in the
simulation 7,,. Indeed, we saw in Section [4] that under some mixing conditions on the kernels and some
boundedness conditions on the potentials, we had that the variance of the error remained stable as time
went through. In this last chapter, we will discuss an alternative way of reducing the variance of such
approximations. The key idea will be to change the dynamics of our Markov chain to make the event of
survival less rare. Throughout this chapter, we will continually use the example that we began in Section
L2

Example 5.1 (Continuation of Example [1.3). Let (X;);>0 be a simple symmetric random walk (SSRW for
short) on the integers, which one could think of as a (very simplistic model of a) radioactive particle moving
in some medium. Let's imagine that at the levels &k we have two “absorbing barriers”, which cause a
particle to die upon hitting them. The natural rare event to consider here is

Ay = {|Xn| <k, for all n <t},

and we may be interested in quantities such as P,(A;), or E;[f(X¢)|A¢], etc. Let's make the following
observation however:

Lemma 5.2. The probability of the event A; decays exponentially in t.

Sketch. Since the probability of jumping upwards is positive, we have that there exists constants m € N
and § > 0 such that forany z € {—-k+1,--- |k — 1},

P, (X, > 2k) > 4,
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from which it follows that for any starting point x in “allowed interval”, we have that P,(4,,) < 1 — 4.
Now we can repeatedly use the Markov Property and apply this same reasoning to conclude that

P.(Ajm) < (1 - 5)'.
Finally, by writing any t as jm + r for some j,r, we get the desired claim. O

Let's assume we try to estimate this through the naive approach described at the start of Section [3] i.e: by
simulating n i.i.d paths <X(()Z),X£Z), e ,Xt(l)> up to time t from a SSRW on Z, and simply counting how
many of them stay in the interval Iy = {—k + 1,--- ,k — 1}. By the Strong Law of Large Numbers, we

know that as £ — oo, we will have almost sure convergence of our estimator

s_ 1 () x(0) (i)

= LS {(xxl - x) e
i<n

to our desired probability. However, let's have a closer look at what happens to the variance of our estimator

at a fixed sample size n:

1 i i i 1 i i i
Varo | =S 1{(xg" X (0 X)) | = = > Varo (1), x(7, - X))
i<n i<n
1
=— D Py(r > t)(1 = Po(r > 1))
i<n

= () (1 = po(t)

where po(t) = Po(7 > t) for convenience. Naturally, this variance will be very small since py(t) is also
really small, but the key observation is that we should compare it to the real value we are trying to estimate
(Indeed, if the variance of an estimator is of order 10719 but the real value is of order 10720, we actually
have an incredibly bad estimator!). Since for large ¢, we said that po(t) ~ exp(—ct), this relative variance
actually blows up if ¢ is large relative to n. Indeed, the relative variance is:

po(H)(1—po(t))

n B 1 — N exp(c't)
po(t) - o) V(1 =po(t)) NG

In more precise words, as we increase ¢, we need exponentially many samples to maintain our error “stable”.
An intuitive explanation for this phenomenon is as follows: let's consider the problem of estimating 7,,(f) =
E[f(X,)|Ay]. The naive estimator would then be

! S A,

#Surviving Particles

survivors

However, since the vast majority of paths are killed before time n, the estimator above effectively uses a
vanishing number of samples. In other words, under the law of the SSRW, most trajectories contribute
nothing to the expectation of interest, the law is “putting its mass in the wrong place”. An intuitive way to
fix this would be to change the reference measure so that a more meaningful fraction of these paths “reach
the rare event”. This is precisely what we will discuss in the next two sections. First, we will discuss some
general technicalities, and then present a specific example.
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5.1 Change of Reference Measure

Let us return to the general framework introduced earlier. We consider a canonical probability space

I[IE [[& x. P, |,

n>0 n>0

where P, is a reference measure under which the canonical process X is a Markov chain with initial distri-
bution x and transition kernels M, : E, x &,11 — [0, 1].

Suppose now that we wish to work with a different set of dynamics. More precisely, assume we choose
an alternative initial distribution fi such that p < fi, and replace the transition kernels M,, by kernels M,
satisfying

M, (z,-) < My(z,-), for all n and = € E,.

Equivalently, this corresponds to changing the reference measure from P, to a new measure 15,;, under
which X is a Markov chain with initial distribution & and transition kernels M,,.

Remark 5.3. In the context of the previous discussion, these new dynamics will be chosen so that “rare
events become less rare” under this new measure.

Given a collection of potentials (G, a natural question is whether the Feynman—Kac model associated with
(G,P,,) can be related to a new model (G,P}) for a suitable choice of modified potentials G. In other
words: if we change the dynamics from P, to P, can we still keep the expectations the same if we alter
the potentials slightly? We quickly see from the assumptions above that the answer is positive:

Proposition 5.4. Let P, and f’ﬂ be the probability measures described above. Let G be a collection of
potentials. Then defining new potentials

dMn(xn—la )

G(zo, -+ ,zn) = G(z0, - ’x")dMn(an )($n), where ——(x¢) := —M(wo),

we have that the FK models associated to (G,P,,) are equivalent to those associated to (G, P}).

Proof. Note that we can write for a set Ag x --- x A, € E X -+ X Ep:

P“’n(AO X oo X An) = /A ,u(d:]j()) N Ml(l‘o, dl‘l) s N Mn(l‘nfl, d:En)
B dMy(zp-1,-) -
= /Ao p(dzxo) N Ml(xo,dx1)~-/A 7dM ( )( n) My (Tp—1, dxy,)

unravelling all this, we get that

P,n(Agx - xA,) =

pn

so in fact we see that




Now the proof follows immediately. Indeed:

L k<n
dP,.n
- Ef’; n f(Xn) H Gk(Xk)dPlj’ (Xo, T aXn)
k<n Il

=Ep, . |F(Xn) [ Gr(Xp)

O

Remark 5.5. The proof above shows that the law P, is locally absolutely continuous with respect to Pu-
This means that for any finite time horizon n, the n-dimensional distribution P, ,, is absolutely continuous
with respect to P, .

A way of formalising the intuition that “variance can be reduced if the new dynamics make the rare event
less rare” is through the following proposition, whose content corresponds to |3, Exercise 12.3.3].

Proposition 5.6. Let ;1 be a probability measure on some measurable space (X,B(X)), f be a non-
negative bounded function on X, and_(Xi)Z-<N be i.i.d samples from p. Furthermore, let [i be another
probability measure such that i > p, f = f%, and (X;)i<n be i.i.d samples from fi. Finally, let u™¥ and

N be the empirical measures obtained from each collection of particles respectively. Then
Var (5 () = Var (u™(£)) = n (2 (1- 22
N dp

Proof. First of all, it is easy to verify that that NVar(puV (f)) = p((f — w(fN?) = u(f?) — u(f)?, as well
as a similar expression for i and f, as well as the fact that E[a" (f)] = u(f). From this we see that,

NVar(i™(f)) = g((f = n(£))?)

=u <f2 G u(f)? + p(f?) = u(f?)

— NVar(u¥(f)) - <f2 <1 - ﬁ)) |

O

Example 5.7. Let's specialise back our motivating example, where P, is the law of a SSRW on Z,
i.e: Py(xg, -+ ,x,) is the probability that a SSRW on Z up to time n takes the path (xg, -+ ,x,). In
light of Proposition , we can take p = Py, and f(zo, - ,2p) = Hign 1{z; € I}, where I}, =
{=k+1,--- ,k—1}. In this case, as we have seen, we may choose some different transition probabilities
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M (z, ) which give rise to a different law f’xo’n on path space, and Proposition teIIs us that by simulating
from Py, ,, instead of P, ,,, we can obtain a variance reduction so long as

AP, »
Pxo,n (l{path iS a|ive} <1 — dl)07)> > 0

xo,n
This condition can be heuristically interpreted as: on average surviving paths are more like likely under P, ,,
than under P, ,. The corresponding interpretation on the general case where we perform killing with rates
given by potentials G(z) is precisely that variance reduction is achieved if paths that spend more time on
areas of high potential are more likely under P than P.

5.2 Doob’'s Transform

To conclude the report, we present one way of constructing the new dynamics M which we have been
discussing so far. We will then show a specific example and sketch an argument of why it produces a
reduction in variance.

Definition 5.8. Let M be a transition kernel from a space E — E (we assume homogeneity for simplicity),
and let U : E — R be a positive function, which we call a weight function on E. The kernel

Q@dMZSgQﬂ%@)

is called the Doob's h-transform of M with weight function U.

Remark 5.9. The kernel Q(z,dy) as defined above is not necessarily a probability kernel, i.e: Q(x, E)
might not be equal to 1 in general. It is quickly seen however, that Q(x,dy) is a probability kernel if and
only if U is harmonic for M, i.e:

/ M(z, dy)U(y) = U(z).
FE

The idea in the definition above is that U encodes the regions of space where we want our Markov chain to
spend more time in. To account for the case where U is not harmonic, we can then define a new transition

kernel,
v Q(z, dy) 1 Uy)
M(z,dy) = =—7 M (z, dy)
Q,5) [ &M (z,dz) U@)
And with these new kernels, build the measure P. Let's say for simplicity that we start both chains at the
same point x( of state-space, then in light of the calculations done in section 5.1} we know that

dP o n (T U(xo)
8f;;;;(x07...’zn)__ (J;Ecg(xk,5)> (]($n) (5.1)

In particular, we may now use this to relate expectations with respect to the measure P, to expectations
with respect to the measure P,,. Namely:

U(xo)

Ey, [ f(X0) [ Gr(Xk)| = Euy | £(X0) | ] Gr(X)Q(Xk, S) i alk

k<n k<n

(5.2)

where E;, and Ewo denote expectations with respect to P, and f’xo respectively. Let's return to the
example of the SSRW with killing. The reason why the Doob transform is useful for variance reduction
comes precisely from the following Proposition.
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Proposition 5.10. Let (X)), be a Markov chain with transition kernel P on some state space E. Let
A C E be a set of “allowed” states. Let P4 be the restriction of P to A, i.e: Py : A x A — [0,1] given
by Ps(z,y) = P(x,y). Let (A\,U) be an eigenpair for P4, i.e: PAU = AU. Then for x € A:

Uly)

1
lim Py(X; =y X1, ,Xn € A) = = "< P(a,
Jim Py (X = y[ X €A =T @Y

For a proof, we refer the reader to |2, Section 3.2]. In other words, the Doob transform with weight function
U as in the proposition above will give rise to the “survival’ process, i.e: the original chain “conditioned on
living forever". Let's now see precisely how much variance reduction is achieved by having performed this
change of reference measure:

Example 5.11. Let's show explicitly an example the Doob transform discussed above. In the case of the
SSRW on Z, let P be its transition matrix and Ij the interval {—k+1,--- k& —1}. We are then interested
in finding a function U(z) and an eigenvalue \ such that

Ux+1)—-U(x—1)

(PLU) () = ; = WU ()

with the boundary conditions U(z) = 0 for z € {—k, k}. By recalling that cos(d) = 5 (exp(if) + exp(—if)),
one quickly verifies that

U(z) =cos (5F) z€ly
A = cos (ﬁ)
solves the system above. As such, the resulting Doob transform looks like

Pla,y) = 1 coS (%)
»Y) = cos (ﬁ) cos (%)

Using these dynamics and all the theory discussed above, we see that for any x € Ij:

P(xz,y).

E.[f(X,)1{particle is alive at time n}] = \"E, [f(Xn)

With this expression we can now see how by simulating the right hand side expectation we can achieve a
drastic reduction in variance. Indeed: say we try to simulate

N

= 1 l ; . .
W (f) = N Zf(XZL)l{XﬁL is alive},
i=1
where (X});<n were i.i.d simulated from P . Since f is bounded, we can write
1 | |
Var(37 (f)) = w Var(H{X, is alive})  3u(f) = Pon(Xy, is alive)

which means, in the same way as we saw earlier, that the relative variance of this approximation:

VG () explen)

for some ¢ > 0,
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is of order exp(cn) as n — oo, which is not too good. On the other hand, we know that to compute 7,,(f),
it suffices to estimate E,. [f(X,)/U(X,)] and then weigh the result by the deterministic quantity U (z)A".
Now notice that for the estimator

1 N

m(f) = 3 > FX)/UX),

i=1

where (X})t < n are i.i.d simulations from P, ,, we have that both

Var(m™(f)) = %Var(f(Xn)/U(Xn)) and  E[m™(f)] = Eq[f(Xn)/U(X)]

are order 1 as n — oo, which means that our relative variance is order 1 too as n — oco. A drastic reduction
compared to the naive method.
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